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Abstract

Background: Microscopic examination of stained thick blood smears (TBS) is the gold standard for routine malaria
diagnosis. Parasites and leukocytes are counted in a predetermined number of high power fields (HPFs). Data on
parasite and leukocyte counts per HPF are of broad scientific value. However, in published studies, most of the
information on parasite density (PD) is presented as summary statistics (e.g. PD per microlitre, prevalence,
absolute/assumed white blood cell counts), but original data sets are not readily available. Besides, the number of
parasites and the number of leukocytes per HPF are assumed to be Poisson-distributed. However, count data rarely fit
the restrictive assumptions of the Poisson distribution. The violation of these assumptions commonly results in
overdispersion. The objectives of this paper are to investigate and handle overdispersion in field-collected data.

Methods: The data comprise the records of three TBSs of 12-month-old children from a field study of Plasmodium
falciparummalaria in Tori Bossito, Benin. All HPFs were examined systemically by visually scanning the film horizontally
from edge to edge. The numbers of parasites and leukocytes per HPF were recorded and formed the first dataset on
parasite and leukocyte counts per HPF. The full dataset is published in this study. Two sources of overdispersion in
data are investigated: latent heterogeneity and spatial dependence. Unobserved heterogeneity in data is accounted
for by considering more flexible models that allow for overdispersion. Of particular interest were the negative binomial
model (NB) and mixture models. The dependent structure in data was modelled with hidden Markov models (HMMs).

Results: The Poisson assumptions are inconsistent with parasite and leukocyte distributions per HPF. Among simple
parametric models, the NB model is the closest to the unknown distribution that generates the data. On the basis of
model selection criteria AIC and BIC, HMMs provided a better fit to data than mixtures. Ordinary pseudo-residuals
confirmed the validity of HMMs.

Conclusion: Failure to take overdispersion into account in parasite and leukocyte counts may entail important
misleading inferences when these data are related to other explanatory variables (malariometric or environmental). Its
detection is therefore essential. In addition, an alternative PD estimation method that accounts for heterogeneity and
spatial dependence should be seriously considered in epidemiological studies with field-collected parasite and
leukocyte data.
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Background
Microscopy of thick blood smears (TBSs) is the usual and
most reliable diagnostic test for Plasmodium falciparum
malaria [1-7]. Parasite density (PD) is classically defined
as the number of asexual parasites relative to a microlitre
of blood. PD is assessed either by counting parasites in a
predetermined number of high power fields (HPFs), or by
counting parasites according to a fixed number of leuko-
cytes. Most of PD estimation methods assume that the
distribution of the thickness of the TBS, and hence the
distribution of parasites and leukocytes within the TBS,
is homogeneous; and that parasites and leukocytes are
evenly distributed in TBSs, and thus can be modelled
through a Poisson-distribution [1,8-10]. PD data-based
inferences also rely on such assumptions [11-17].
Identifying the distribution of parasite and leukocyte

data on TBSs is the key to an appropriate analysis.
Raghavan [18] recognized that parasites may be missed
due to the random variation within a slide. He used
the binomial distribution to estimate the probability of
missing a positive slide, when only a fixed number of
HPFs is read. He assumed that parasites were randomly
distributed in the blood film, and that each parasite
has the same chance of occupying any of the HPFs
read. Dowling & Shute [19] showed that leukocytes are
evenly distributed in thick films, and that their number
varies directly according to the thickness of the smear.
They indicated a normal distribution of leukocytes per
HPFs. In addition, they claim that parasites are also dis-
tributed evenly throughout the thick blood smear. How-
ever, they noticed, in the case of scanty parasitaemia, a
phenomenon of “grouping”, in which parasites tend to
aggregate together in a specific area of the smear. Petersen
et al. [9] claimed that estimating the PD from the pro-
portion of parasite-positive HPFs, instead of counting
parasites in each field, underestimates the PD in TBSs,
since a parasite-positive field may contain more than one
parasite. To get ride of this problem, they suggested a
correction of the estimation method. Their model was
built under the assumption that parasites are Poisson-
distributed on the TBSs. Under this assumption, the
estimate of the mean number of parasite per field (λ)
is then ̂λ = − log(1 − p), where p is the percentage
of parasite-positive HPFs. However, due to the cluster-
ing of parasites in TBSs, ̂λ was corrected by a factor
of 2. This factor of two was empirically chosen with-
out a clear analytical proof. Bejon et al. [1] used the
Poisson distribution to calculate the likelihood of sam-
pling a parasite within the blood volume examined in
microscopy. Alexander et al. [20] described the varia-
tion across the sample by a homogeneous Poisson dis-
tribution of parasites on TBSs. They unpacked -under
the Poisson assumption- similar results to Raghavan’s -
under the Binomial assumption- at low densities, but

he argued for the evidence of discrepancy as density
increases.
Two assumptions specific to the Poisson model have

been identified as sources of misspecification. The first
is the assumption that variance equals the mean. The
second is the assumption that events occur evenly. That
assumption preludes, for instance, that occurrences in a
field influence the probability of occurrences in neigh-
bouring fields. But this type of contagion is to be sus-
pected in the distribution of parasites and leukocytes in
TBS. Violations of both assumptions lead to the same
symptom: a violation of the Poisson variance assump-
tion. Overdispersion, or extra-Poisson variation, denotes
a situation in which the variance exceeds the mean.
Unobserved heterogeneity and positive contagion lead
to overdispersion [21-24]. Undetected heterogeneity may
entail important misleading inferences, so its detection is
essential.
Three lines of research exist to account for overdisper-

sion. Firstly, an overdispersion test is helpful, since the lack
of significance in testing overdispersion might indicate
that a further investigation of latent heterogeneity might
not be necessary. Various tests for detecting overdisper-
sion have been developed [25-29]. Secondly, the effect of
overdispersion has been analysed and corrected within
the maintained Poisson model [9,30]. Thirdly, various
models have been proposed that account for unobserved
heterogeneity while nesting the Poisson model as a spe-
cial case [31-38]. Standard approaches employ mixture
distributions, either parametrically by introducing models
that accommodate overdispersion, for example the nega-
tive binomial models, or semiparametrically by leaving the
mixing distribution unspecified [9,39]. These parametric
and semiparametric models involve an extra-dispersion
parameter, which requires numerical methods for its esti-
mation [40-42].
In published studies, malariological data are presented

as summary statistics (e.g. parasite density per microlitre,
prevalence, absolute or assumed WBC count). Parasite
and leukocyte counts per field, while of great importance,
are not available in the open literature or in archived
sources. A dataset of parasite and leukocyte counts per
HPF was then constituted and published in this study.
Three TBSs of 12-month-old children were entirely exam-
ined. All HPFs were read sequentially. The number of
parasites and the number of leukocytes per HPF were
recorded. The aim of this study is twofold: to examine the
presence of overdispersion in the distribution of parasites
and leukocytes in TBSs, and to fit the appropriate model
that allows for overdispersion in these data. To do so, two
sources of overdispersion are explored: the latent hetero-
geneity in parasite and leukocyte counts, i.e. the presence
of homogeneous zones (where the data have a similar
distribution) associated to an unobserved state, and the
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spatial dependence in data, i.e: the correlation between
neighbouring occurrences.

Materials andmethods
Epidemiological data
The data accompanying this study were gathered from a
field study of Plasmodium falciparum malaria in the dis-
trict of Tori Bossito located 40 kmNorth-East of Cotonou,
South Benin. Across this field study, 550 infants were fol-
lowed weekly from birth to 12 months [43,44]. Malaria
is perennial in the study area, and according to a recent
entomological survey P. falciparum is the commonest
species (95%), Plasmodium malariae and Plasmodium
ovale representing respectively 3% and 2% [45]. From the
Tori-Bossito study, three thick films of 12-month-old chil-
dren were randomly selected among positive slides and
included in this study. TBSs were stained with Giemsa.
All high power fields (HPFs), defined as oil immersion
microscopic fields (×1, 000), were re-examined by visu-
ally scanning the entire film horizontally from edge to
edge. The number of parasites (p) per field and the num-
ber of leukocytes (�) per field were derived. The letters
“a”, “b” “c” denote the three selected TBSs throughout this
paper. A summary of the data is given in Table (1). His-
tograms of the data are plotted in Figure 1 in order to help
for visualizing the shape of the data before the distribu-
tions are fitted. The full dataset can be found in Additional
file 1.

Table 1 Descriptive statistics of parasite and leukocyte
counts on TBSs

TBS a b c

Number of HPFs 754 938 836

Volume of blood∗ (μl) 1.51 1.88 1.67

PD† (parasites/μl) 16,190.79 31,783.18 3,725.95

Parasites and pa �a pb �b pc �c

leukocytes

Total number 20621 10189 38112 9593 5989 12859

Mean (per HPF) 27.35 13.51 40.63 10.23 7.16 15.38

Median 25 13 37 10 7 14

Range 0-111 0-43 0-131 0-35 0-22 2-47

IQR‡ 12-40 8-17 20-60 6-14 4-10 11-19

Standard deviation 18.76 7.22 25.94 5.90 3.92 6.62

% negative§ 1.06 1.06 0.75 1.39 1.08 0.00

Three thick blood smears are studied “a”, “b”, “c”.
Parasite and leukocyte counts for each TBS are denoted (pa , �a), (pb , �b) et (pc , �c).
*Assuming that the volume of blood in one HPF is approximately 0.002 μl
[19,46,47].
†PD = p

�
× 8,000, assuming that the number of leukocytes per microlitre of

blood is 8,000 [7,48,49].
‡Inter-Quartile Range.
§Percentage of negative high-power fields (HPFs) where no parasites and/or no
leukocytes are seen.

Statistical models for parasite and leukocyte data
Some laboratory counting techniques consist in reading
a certain volume of blood (say u μl) before the film
is declared negative. If parasites are seen in u μl, then
an additional volume (say v μl) is read. The volume of
blood contained in one HPF is approximately 0.002 μl
[19,46,47]. The assumed number of white blood cells per
microlitre of blood is 8, 000 [7,48]. In practice, u μl may
correspond to 100 HPFs (i.e. u = 0.2 μl), and v μl may
correspond to 200 white blood cells (i.e. v = 0.025 μl)
[7,50-52]. In this example, parasites are assumed to be
spread evenly throughout the TBS with density θ μl.
Under the Poisson assumption, the probability of see-
ing no parasites in u volume of blood is e−θu, and the
probability of seeing exactly x parasites (x > 0) is then
(1− eθu)e−θv(θv)x−1/(x− 1)!. The latter probability is the
product of the probability of seeing at least one parasite in
volume u, and the probability of seeing (x − 1) more par-
asites in volume v. Under this procedure, the estimation
of the PD depends on volumes u and v, which are not the
same for all slides.
The restrictive nature of the equidispersion assumption

in the Poisson model led to the development of numerous
techniques both for detecting and modelling overdisper-
sion [25,26,28,31,53-55]. This section details alternative
models used to fit the PD and leukocyte data.

Simple parametric models
The typical alternative to the Poisson model is the neg-
ative binomial (NB) model, which is an attractive model
that allows overdispersion. The dispersion parameter φ

in the NB controls the deviation from the Poisson. This
makes the NB distribution suitable as a robust alternative
to the Poisson. However, it is useful to obtain more gen-
eral specifications through other modelling frameworks
that handle overdispersion or zero-inflation (NB, geomet-
ric, logistic, Gaussian, exponential, zero-inflated Poisson
(ZIP), Poisson hurdle (HP), zero-inflated negative bino-
mial (ZINB), negative binomial hurdle (HNB)). The main
motivation behind using zero-inflated [56,57] and hurdle
count models [35,58] is that PD data frequently display
excess zeros at low parasitaemia levels. Zero-inflated and
hurdle countmodels provide a way ofmodelling the excess
zeros in addition to allowing for overdispersion. These
models include two possible data generation processes
(one generates only zero counts, whereas the other pro-
cess generates counts from either a Poisson or a negative
binomial model).

Finitemixturemodels
One method of dealing with overdispersed observations
with a bimodal or more generally multimodal distribu-
tion is to use a finite mixture model. Mixture models are
designed to account for unobserved heterogeneity in a set
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Figure 1 Histograms of parasite and leukocyte counts per HPF. The empirical density function and the fitted distributions (Poisson, NB) are
displayed on the top of each histogram.

of data. The sample may consist of unobserved groups,
each having a distinct distribution for the observed vari-
able. Consider for example the distribution of parasites
per HPF, Xt . The fields can be divided into groups accord-
ing to its locations, e.g. edges and center of the film. Even
if the number of parasites within each group was Poisson-
distributed, the distribution of Xt would be overdispersed
relative to the Poisson. In the case of a two-component
mixture with weights (δ1, δ2), means (λ1, λ2) and vari-
ances (σ 2

1 , σ
2
2 ), the total variance exceeds the mean by

δ1δ2(λ1 −λ2)2 (details of the proof are given in Additional
file 2). Hence, the two-state Poisson mixture is able
to accommodate overdispersion better than the Poisson
model with one component. The mixture component
identities are defined by some latent variables (also called
the parameter process). If the latent variables are inde-
pendent, the resulting distribution is called independent
mixture. An independent mixture distribution consists of
a finite number, say m, of component distributions and
a mixing distribution which selects from these compo-
nents. Note, however, that the above definition of mixture

models ignores the possibility of spatial dependence in
data, a point that shall be addressed by introducing Hid-
den Markov Models (HMMs), which connect the latent
variables into a Markov chain instead of assuming that
they are independent.

HiddenMarkovmodels (HMMs)
Unlike the mixture models, where observations are
assumed independent of each other and the spatial rela-
tionship between neighbouring data is not taken into
account, HMMs incorporate this spatial relationship, and
show promise as flexible general purpose models to
account for such dependency [59-61]. HMMs can be used
to describe observable events that depend on underly-
ing factors, which are not directly observable, namely
the hidden states. A HMM consists of two stochastic
processes: an invisible process of hidden states, namely
the hidden process (also called the parameter process),
and a visible process of observable events, namely the
observed process (or the state-dependent process). The
hidden states follow a Markov chain, in which, given



Hammami et al. Malaria Journal 2013, 12:398 Page 5 of 15
http://www.malariajournal.com/content/12/1/398

the present state, the future is independent of the past.
Modelling observations in these two layers, one visi-
ble and the other invisible, is very useful to classify
observations into a number of classes, or clusters, and
to incorporate the spatial-dependent information among
neighbouring observations. In the context of parasite and
leukocyte counts per HPF, emphasis is put on predict-
ing the sequence of regions on the TBS (i.e. the states)
that gave rise to the actual parasite and leukocyte counts
(i.e. the observations). Since a variation in the distri-
bution of parasites and leukocytes in the TBS is sus-
pected, these regions cannot be directly observed, and
need to be predicted. Inference in HMMs is often carried
out using the expectation-maximization (EM) algorithm
[62-64], but examples of Bayesian estimation imple-
mented through Markov chain Monte Carlo (MCMC)
sampling are also frequent in the literature [65,66]. In
most practical cases, the number of hidden states is
unknown and has to be estimated. The authors shall
return to the latter point later in the discussion.

Methodology
Firstly, the problem of testing whether the data come
from a single Poisson distribution is considered. The
basic null hypothesis of interest is that “variance = mean”
(equidispersion). In a context such as this, the focus is
put on alternatives that are overdispersed, in the sense
that “variance > mean”. The hypothesis being tested is
commonly referred to as the homogeneity hypothesis. A
commonly used statistic for testing the Poisson assump-
tion is Pearson’s test, which in spatial statistics is known
as the index of dispersion test [67,68]. The statistic is
the ratio of the sample variance to the sample mean,
multiplied by (n − 1), where n is the sample size.
In the case of the Poisson distribution, the variance is

equal to the mean, i.e. the index of dispersion is equal to
one. In the case of the binomial distribution, the index
of dispersion is less than 1; this situation is called under-
dispersion. For all mixed Poisson distributions, that show
overdispersion in data, the index of dispersion is greater
than 1. Fisher [67] showed that under the assumption
that data are generated by a Poisson distribution with
some parameter λ, then the test statistic approximately
has a Chi-squared distribution (χ2) with (n−1) degrees of
freedom.
If the Poisson assumption is violated, the goodness

of fit of alternative simple parametric models should
be assessed. In order to estimate model parameters,
a direct optimization of the log-likelihood is per-
formed using optim [69]. The Kolmogorov-Smirnov (k.s)
goodness-of-fit test is used [70] to test the validity of
the assumed distribution for the data. The test evalu-
ates the null hypotheses (that the data are governed by
the assumed distribution) against the alternative (that

the data are not drawn from the assumed distribution).
Model selection criteria are used to determine which of
the simple parametric models best fits the data. The selec-
tion criteria used in this paper are presented in the next
section.
Secondly, the first source of overdispersion in count data

is investigated, which is unobserved heterogeneity. The
unobserved heterogeneity among parasite and leukocyte
data is explored using mixture models. The motivation
behind the use of mixture models is that they can han-
dle situations where a single parametric family is unable
to provide a satisfactory model for local variations in
data. The objective here is to describe the data as a finite
collection of homogeneous populations on TBSs. The
form of these sub-populations is modelled using Poisson
and NB.
Thirdly, the second source of overdispersion is explored,

which is positive contagion [54]. When contagion is
present, the value of Xt positively influences the value of
Xt′(t �= t′). For example, a high number of parasites in one
HPF leads to correspondingly high numbers of parasites in
neighbouring HPFs; likewise, a low number of parasites in
one HPF drive down counts for other neighbouring HPFs.
Since this data-generating process directly influences the
occurrence of parasites in HPFs, it has important implica-
tions for the observed level of dispersion in data.
The autocorrelation plots [71] are a commonly-used

tool for checking randomness and spatial dependence in
data. The autocorrelation function (ACF) will first test
whether adjacent observations are autocorrelated; that is,
whether there is correlation between observations x1 and
x2, x2 and x3, x3 and x4, etc. This is known as lag one
autocorrelation, since one of the pair of tested observa-
tions lags the other by one period (ie. one HPF). Similarly,
it will test at other lags. For instance, the autocorrela-
tion at lag five tests whether observations x1 and x6,
x2 and x7, . . . , x27 and x32, etc, are correlated. If ran-
dom, such autocorrelations should be “near zero” for
any and all time-lag separations. If non-random, then
one or more of the autocorrelations will be significantly
non-zero. HMMs are used to account for autocorrela-
tions in data. The state-dependent distribution is mod-
elled using Poisson and NB. Note that HMMs are an
extension of mixture models with spatial dependence
taken into consideration, and the two types of models are
nested.
The proposed mixture models and HMMs are fitted by

maximum likelihood using the EM algorithm, and vali-
dated by direct numerical maximization using nlm in R
[72,73]. Initialization of the EM algorithm is based on
incremental k-means [74]. Details on the maximization of
the complete-data log-likelihood with regard to parame-
ters of the unobserved state distribution (Poisson, NB) for
mixture models and HMMs are given in Additional file 2.
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Model selection and checking
Models comparison was based on three measures. One
is the deviance statistic, also called the likelihood-ratio
test statistic or likelihood-ratio chi-squared test statis-
tic, which is a measure of the difference in log-likelihood
between two models. If data have been generated by
Model A (a simpler model) and are analysed with Model
B (a more complex model within which model A is
nested), the expected distribution of the test statistic,
which is twice the difference in log-likelihoods 2(LB−LA)

computed using the data, follows a χ2-distribution with
degrees of freedom equal to the difference in the number
of parameters. Hence, LRT permits a probabilistic deci-
sion as to whether one model is adequate or whether an
alternative model is superior. This statistic is appropriate
when one model is nested within another model. Negative
binomial and Poissonmodels are nested because as φ con-
verges to 0, the negative binomial distribution converges
to Poisson. But the situation is non-standard, because
under the null hypothesis the extra parameter φ lies on the
boundary of its parameter space. The standard asymptotic
result of a χ2-distribution is not applicable. For this pur-
pose, Akaike’s Information Criterion (AIC) [75] and the
Bayesian Information Criterion (BIC) [76] are used. These
two measures penalize for model complexity and permit
comparison of nonnested models. Models are nonnested
if there is no parametric restriction on onemodel that pro-
duces the secondmodel specification. The AIC (resp. BIC)
can be thought of as the amount of information lost when
a specific model to approximate the real distribution of
data is being used. Thus, the model with the smallest AIC
(resp. BIC) is favored.
In the area of statistical modelling (e.g: regression, gen-

eralised linear models), residuals are broadly used to
check the validity of the fitted model. In this context,
residuals are calculated from the model predictions and
the observed data. In the context of HMMs, no strict ana-
log to a residual exists since the value of a residual depends
on the unobservable state. Pseudo-residuals offer a con-
venient way for model checking in HMMs [77,78]. The
HMM version of residuals is used to check the validity
of the model as well as to identify outliers, since their
absolute value indicate the deviation from the median
of the distribution. While information criteria for model
selection compare the relative goodness-of-fit, the analy-
sis of pseudo-residuals provides a measure of the absolute
goodness-of-fit. Zucchini and MacDonald [77] provide
details for calculating and assessing two types of pseudo-
residuals (ordinary and forecast), for both continuous
and discrete state distributions. Model pseudo-residuals
can also be extracted using the function “Residuals”
in the R package HiddenMarkov. Here, the ordinary
pseudo-residuals are used to evaluate the suitability of
selected HMMs. The ordinary pseudo-residual for the

observation xt is based on its conditional distribution
given all other data. In the case of discrete observations,
pseudo-residuals are defined as intervals [ r−t , r+t ] as

r−t = 	−1 (P(Xt <xt | xt−1, xt−2, . . . , x1)) ∀t ∈ �1 ;T�

r+t = 	−1 (P(Xt ≤xt | xt−1, xt−2, . . . , x1)) ∀t ∈ �1 ;T�

where 	 is the c.d.f. of a standard normal-distributed
random variable. If the fittedmodel is correct, the pseudo-
residuals are standard normal-distributed. Graphically,
QQ-plots and pseudo-residual ACFs were used to assess
the goodness-of-fit of selected HMMs.

Results
Overdispersion in parasite and leukocyte distributions
Histograms in Figure 1 show that parasite and leukocyte
counts are clearly skewed to the right. The fitted “candi-
date” distributions, Poisson and NB, are displayed on the
top of each histogram and compared to the empirical den-
sity function in order to visualize how well they match
the data. The Poisson distribution clearly does not fit the
data. On the other hand, the NB distribution fits the data
much more closely than the Poisson distribution. This
result was expected because of the implicit restriction of
the Poisson model on the distribution of the observed
counts. It is true that the negative binomial distribution
converges to the Poisson distribution, but the former will
be always more skewed to the right than the latter with
similar parameters.
The initial visualization of the histograms motivates the

use of Pearson’s test to check for overdispersion. In all
TBSs, the Poisson model was highly significantly rejected
in favor of a model with heterogeneity (p � .0001 using
Pearson’s test). The authors considered fitting data to
alternative models allowing for overdispersion: NB, geo-
metric, logistic, Gaussian, exponential. The k.s test was
significant (p � .0001), then it indicated that the distri-
bution of the parasite and leukocyte data was significantly
different from the distribution against which it was being
compared. However, this test is frequently found to be
too sensitive. Given a large enough sample size, it can
detect differences that are meaningless to the present pur-
pose, in the sense that even very small divergences of the
model from the data would be flagged up and cause signif-
icance of the test. It is certainly worth judging the results
of the test in light of other statistical measures. The AIC
is used to assess the goodness-of-fit of alternative models
to data. The difference in fit between the Poisson model
(resp. NB model) and its corresponding ZIP and HP mod-
els (resp. ZINB and HNB models) is trivial. This result
might be expected due to the non-excess of zeros in data
(see Table 1). The AIC selects the NB model, which is
estimated to be “closest” to the unknown distribution that
generated the data (	AIC 
 10) (see Table 2).
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Table 2 Comparison of simple parametric models fitted to parasite and leukocyte counts per field

Poisson Negative Binomial

−L AIC BIC −L AIC BIC

pa 6801.59 13605.17 13609.80 3200.63 6405.25 6414.50

pb 10838.95 21679.91 21684.75 4344.27 8692.54 8702.23

pc 2472.18 4946.36 4951.08 2302.96 4609.92 4619.38

�a 3108.25 6218.51 6223.13 2532.77 5069.53 5078.79

�b 3547.53 7097.06 7101.90 2965.34 5934.69 5944.38

�c 3051.08 6104.15 6108.88 2728.46 5460.91 5470.37

Geometric Logistic

−L AIC BIC −L AIC BIC

pa 3249.22 6500.44 6505.06 3287.80 6579.60 6588.86

pb 4413.13 8828.26 8833.10 4407.19 8818.38 8828.06

pc 2488.96 4979.93 4984.65 2344.83 4693.66 4703.12

�a 2719.04 5440.09 5444.72 2560.46 5124.92 5134.17

�b 3122.84 6247.69 6252.53 2998.50 6001.01 6010.69

�c 3122.55 6247.11 6251.84 2762.37 5528.74 5538.20

Gaussian Exponential

−L AIC BIC −L AIC BIC

pa 3279.99 6563.99 6573.24 3248.74 6499.48 6504.10

pb 4384.43 8772.85 8782.54 4412.85 8827.71 8832.55

pc 2327.71 4659.41 4668.87 2482.13 4966.25 4970.98

�a 2560.19 5124.39 5133.64 2717.17 5436.34 5440.96

�b 2995.11 5994.21 6003.90 3118.89 6239.77 6244.62

�c 2765.26 5534.51 5543.97 3120.93 6243.86 6248.59

Parasite (pa , pb , pc) and leukocyte (�a , �b , �c) counts are fitted to Poisson, Negative Binomial, Geometric, Logistic, Gaussian and Exponential models. Minus
log-likelihood (−L) and information measures (AIC and BIC) are given. Direct optimization of the log-likelihood was performed using optim in R. The best AIC and
BIC values are highlighted in bold.

The maximum likelihood estimators (MLE) for the dis-
persion parameter of the negative binomial models (φ)
are: φ̂MLE(pa) = 0.53, φ̂MLE(pb) = 0.53, φ̂MLE(pc) = 0.18,
φ̂MLE(�a) = 0.23, φ̂MLE(�b) = 0.28, φ̂MLE(�c) = 0.12
(the maximum likelihood equations are solved iteratively).
The positivity of the dispersion parameter of the negative
binomial models indicates that parasites (resp. leukocytes)
tend to be aggregated together, leaving some areas with
high parasite (resp. leukocyte) densities, and other areas
with very few parasites (resp. leukocytes) [79]. These find-
ings indicate that there is significant overdispersion in the
distribution of parasites and leukocytes across all TBSs
used in the analysis.

Modelling heterogeneity in parasite and leukocyte data
Mixture models fitted to parasite and leukocyte counts
are presented in Table 3. Using a two-state Poisson mix-
ture instead of a one-state Poisson model dramatically
improved the fit to data as judged by the AIC and BIC
contrary to NB case. The simple parametric NB model
was preferred to NB mixtures. The goodness-of-fit of

Poisson mixtures increased with m values. Poisson mix-
tures (slightly) outperformed the one-state NB model
according to AIC for TBSs “a” and “b”. However, the one-
state NB model was preferred to the Poisson mixtures
according to BIC for all TBSs.
Spatial dependence between data is explored through

autocorrelation plots (see Figure 2). Autocorrelations
should be near-zero for randomness, which was not the
case for parasite and leukocyte data. Thus, the random-
ness assumption failed as expected. The confidence limits
are provided to show when ACF appears to be signif-
icantly different from zero. Lags having values outside
these limits (shown as blue dotted bars) should be con-
sidered to have significant correlations. For “pa”, “pb”
and “�a”, the autocorrelation plots start with a moder-
ate autocorrelation at lag 1 (between 0.5 and 0.6) that
gradually decreases. The decreasing autocorrelation is
generally linear, but with significant noise. Such a pat-
tern is the autocorrelation plot signature of a “moderate
autocorrelation”, which in turn provides moderate pre-
dictability if modelled properly. For parasite data “pc”, a
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Table 3 Comparison of independent mixture models fitted to parasite and leukocyte counts by AIC and BIC

Poissonmixture Negative binomial mixture

m = 1 −L AIC BIC −L AIC BIC

pa 6801.59 13605.17 13609.80 3200.63 6405.25 6414.50

pb 10838.95 21679.91 21684.75 4344.27 8692.54 8702.23

pc 2472.18 4946.36 4951.08 2302.96 4609.92 4619.38

�a 3108.25 6218.51 6223.13 2532.77 5069.53 5078.79

�b 3547.53 7097.06 7101.90 2965.34 5934.69 5944.38

�c 3051.08 6104.15 6108.88 2728.46 5460.91 5470.37

m = 2 −L AIC BIC −L AIC BIC

pa 3962.18 7930.35 7944.23 3200.63 6409.25 6430.53

pb 5882.41 11770.81 11785.34 4344.27 8696.54 8718.69

pc 2289.73 4585.47 4599.65 2302.96 4613.93 4635.61

�a 2633.87 5273.75 5287.62 2532.77 5073.54 5094.81

�b 3029.67 6065.33 6079.86 2965.35 5938.69 5960.84

�c 2756.98 5519.97 5534.15 2728.45 5464.91 5486.59

m = 3 −L AIC BIC −L AIC BIC

pa 3397.75 6805.50 6828.63 3200.63 6413.25 6447.60

pb 4761.19 9532.38 9556.60 4344.27 8700.54 8736.20

pc 2288.39 4586.77 4610.41 2302.96 4617.93 4652.89

�a 2527.85 5065.70 5088.83 2532.77 5077.54 5111.88

�b 2945.87 5901.74 5925.95 2965.35 5942.69 5978.35

�c 2729.21 5468.42 5492.06 2728.45 5468.90 5503.87

m = 4 −L AIC BIC −L AIC BIC

pa 3267.46 6548.92 6581.29 3189.16 6394.32 6442.42

pb 4470.16 8954.33 8988.24 4344.27 8704.54 8754.38

pc 2288.21 4590.42 4623.52 2302.96 4621.93 4670.85

�a 2519.22 5052.44 5084.81 2532.77 5081.54 5129.63

�b 2938.52 5891.05 5924.95 2965.35 5946.69 5996.53

�c 2721.23 5456.47 5489.57 2728.45 5472.90 5521.82

Parasite (pa , pb , pc) and leukocyte (�a , �b , �c) counts are fitted to Poisson mixtures and negative binomial mixtures. The number of components ism. Minus
log-likelihood (−L) and information measures (AIC and BIC) are given. Models were fitted by maximum likelihood using the expectation-maximization (EM) algorithm,
and validated by direct numerical maximization using nlm in R.

very few lags > 4 slightly lie outside the 95% confidence
limits. For leukocyte data “�b” and “�c”, with the excep-
tion of lags < 5, almost all of the autocorrelations fall
within the 95% confidence limits. For all TBSs, the ACF
suggests the existence of a spatial dependence between
data. HMMs are therefore used to account for this
dependence.
The comparison of independent mixture models in

Table 3 and HMMs in Table 4 shows that, on the basis
of AIC and BIC, HMMs are superior to mixture mod-
els. Although more parameters need to be evaluated
for HMMs than for comparable independent mixtures,
the corresponding AIC and BIC were lower than those
obtained for the independent mixtures. Given the spa-
tial depedence shown in Figure 2, one would expect that

independentmixturemodels will not performwell relative
to HMMs.
Due to its higher complexity, an m-state model will

always have a higher likelihood than an (m-1)-state model.
Model selection criteria are used to see if the improve-
ment in the likelihood was great enough to indicate that
the m-state model captures more heterogeneity in data
than the (m-1)-state model. Both AIC and BIC, try to
identify a model that optimally balances model fit and
model complexity. These two criteria are plotted against
the number of states m of the negative binomial HMM
in Figure 3. Several comments arise from Figure 3. Unlike
the NB mixtures, using two-state NB-HMM instead of
one-state NB-HMM dramatically improves the fit to data.
Little to no improvement in AIC is gained for m ≥ 3.
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Figure 2 Sample autocorrelation function (ACF). Autocorrelation plots for parasite (pa , pb , pc) and leukocyte (�a , �b , �c) counts show correlations
between values xi and lagged values of the counts for lags from 0 to 30. The lagged values can be written as xi−1, xi−2, xi−3, and so on. ACF gives
correlations between xi and xi−1, xi and xi−2, and so on. The lag is shown along the x-axis, and the autocorrelation is on the y-axis. The blue dotted
lines indicate bounds for statistical significance.

According to both AIC and BIC, the model with four
states is the most appropriate for pa. For the other counts,
AIC and BIC selected different models. The Optimal
numbers of states selected by LRT (p � .0001), AIC and
BIC are given in Table 5. AIC and LRT selected the same
models. Models selected by AIC and LRT are more com-
plex than those selected by BIC since BIC penalizes larger
models more. As it turns out, there is no clear “best” final
model. One can narrow down his decision to the two
selected NB-HMMs or investigate whether BIC, which
selected a smaller “best” model, is more appropriate than
AIC in this situation. This would be hard to pin down
without extra-statistical information (scientific or practi-
cal). It should be noted, however, that the BIC increases
consistently after a minimum is attained, while the AIC is
more flat around the minimum. This evidence weighs in
favour of the BIC.
Even though the AIC and BIC selected two or three-

state NB-HMMs for the parasite data pc, one may con-
sider the Poisson-HMMs as an acceptable alternative,
since its AIC and BIC scores were only marginally higher

than the competing models (	AIC < 10 and 	BIC <

10). The latter has the advantage of being computation-
ally tractable, while the NB-HMM is more complex as
shown in Additional file 2 (higher number of param-
eters, no analytical solution for the MLE). Hence, one
may check whether the Poisson-HMMs provides an ade-
quate fit for the parasite data pc using pseudo-residuals.
Figure 4 shows that the single Poisson distribution is def-
initely not appropriate since the pseudo-residuals deviate
substantially from the standard normal distribution. In
addition, many pseudo-residuals segments lie outside the
bands of 0.5% and 99.5%. For the other models, very few
observations stand out as extreme, histograms of pseudo-
residuals are approximately normal-shaped and autocor-
relations are “near zero” indicating low correlation in the
residuals. However, the QQ-plots show that the upper
quantiles are badly represented for the three and four-
state Poisson-HMMs. Considering only the diagnostic
plots, and not the model selection criteria, one can accept
the two-state Poisson-HMM as the final fitting model
for pc.
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Table 4 Comparison of hiddenMarkovmodels fitted to parasite and leukocyte counts by AIC and BIC

Poisson HMM Negative binomial HMM

m = 1 −L AIC BIC −L AIC BIC

pa 6801.59 13605.17 13609.80 3200.63 6405.25 6414.50

pb 10838.95 21679.91 21684.75 4344.27 8692.54 8702.23

pc 2472.18 4946.36 4951.08 2302.96 4609.92 4619.38

�a 3108.25 6218.51 6223.13 2532.77 5069.53 5078.79

�b 3547.53 7097.06 7101.90 2965.34 5934.69 5944.38

�c 3051.08 6104.15 6108.88 2728.46 5460.91 5470.37

m = 2 −L AIC BIC −L AIC BIC

pa 3877.14 7764.27 7787.40 3043.31 6098.62 6126.37

pb 5794.89 11599.77 11623.99 4166.23 8344.45 8373.51

pc 2228.73 4467.47 4491.11 2224.71 4461.42 4489.79

�a 2578.83 5167.66 5190.79 2433.86 4879.72 4907.47

�b 2993.67 5997.35 6021.57 2889.88 5791.76 5820.82

�c 2667.70 5345.41 5369.05 2640.61 5293.22 5321.59

m = 3 −L AIC BIC −L AIC BIC

pa 6447.60 3265.54 6553.09 6603.97 3008.87 6035.74

pb 4634.75 9291.50 9344.78 4126.32 8270.64 8314.23

pc 2210.74 4443.48 4495.49 2215.95 4449.90 4492.46

�a 2414.70 4851.41 4902.28 2394.82 4807.64 4849.27

�b 2898.08 5818.17 5871.45 2884.03 5786.06 5829.65

�c 2609.50 5241.00 5293.01 2619.57 5257.14 5299.69

m = 4 −L AIC BIC −L AIC BIC

pa 3096.91 6231.82 6319.70 2985.36 5994.73 6050.23

pb 4322.77 8683.53 8775.57 4117.57 8259.14 8317.27

pc 2206.93 4451.87 4541.71 2214.22 4452.45 4509.19

�a 2380.19 4798.38 4886.26 2390.87 4805.74 4861.24

�b 2880.72 5799.44 5891.48 2881.97 5787.95 5846.07

�c 2599.52 5237.05 5326.89 2615.98 5255.96 5312.71

Parasite (pa , pb , pc) and leukocyte (�a , �b , �c) counts are fitted to Poisson HMMs and negative binomial HMMs. The number of components ism. Minus log-likelihood
(−L) and information measures (AIC and BIC) are given. Models were fitted by maximum likelihood using the expectation-maximization (EM) algorithm, and validated
by direct numerical maximization using nlm in R.

Discussion
The Poisson formulation is seductive in its simplic-
ity. It captures the discrete and nonnegative nature of
count data, and naturally accounts for heteroscedastic and
skewed distributions through its equidispersion property
[80]. However, in most real data situations, equidisper-
sion rarely occurs. The primary objective of the analysis
reported in this paper was to test overdispersion in the
distribution of parasites and leukocytes per HPF. Pear-
son’s test was used to test for overdispersion in data. The
data are shown to have too much variability to be rep-
resented by the Poisson distribution. The primary focus
is on fitting the appropriate alternative model to para-
site and leukocyte data. The goodness-of-fit of alternative

models, designed to address the problem of overdisper-
sion, is illustrated and discussed. The results show that
the negative binomial (NB) model is the most appropri-
ate (among simple parametric models), which suggests
that parasites and leukocytes tend to aggregate together.
The negative binomial has been widely used to inflate the
Poisson dispersion as needed [81], and to analyse extra-
dispersed count data [82-84]. In addition, typical justifi-
cations for using the negative binomial formulation for
count data go far beyond the existing critiques of overdis-
persion. Using the negative binomial distribution instead
of the Poisson, allow to fix important errors inmodel spec-
ification [85]. However, both the Poisson and the negative
binomial distributions impose some special requirements
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Figure 3Model selection criteria of the fitted NB-HMMs. AIC and BIC are plotted against the number of statesm of the negative binomial HMMs
fitted to parasite (pa , pb , pc) and leukocyte (�a , �b , �c) counts.

the credibility of which also needs to be seriously assessed
when statistical models for count data are constructed.
To explicitly account for the heterogeneity factor, an

alternative model with additional free parameters may
provide a better fit. In the case of the parasite and leuko-
cytes counts, the Poisson mixture model and the negative
binomial mixture model are proposed. The four-state
Poisson model is prefered for two of the three TBSs. In
order to further the analysis in the light of the authors’ first
intuition (that data tend to aggregate together), autocor-
relation plots are examined. ACF suggests the existence
of spatial dependence between neighbouring parasite

Table 5 Selection of the number of states of the fitted
NB-HMMs

pa pb pc �a �b �c

LRT 4 6 3 5 3 5

AIC 4 6 3 5 3 5

BIC 4 3 2 3 2 3

Three selection criteria (LRT, AIC and BIC) were used to select the optimal
number of states of the negative binomial HMMs fitted to parasite (pa , pb , pc)
and leukocyte (�a , �b , �c) counts.

and leukocyte counts. Moreover, investigating sources of
overdispersion in data is enhanced by contrasting mixture
models to HMMs. On the basis of AIC and BIC, HMMs
are prefered. Information from neighbouring regions on
TBSs is needed to better estimate this spatial dependence.
In the context of independent mixtures and HMMs,

a task of major importance is the choice of the opti-
mal state-dependent distribution and number of states
m of the latent process, since the choice of the optimal
model leads to the improvement of the goodness-of-fit.
The model fit can be increased with increasing m due to
the model likelihood. However, increasingm increases the
number of parameters. Without making assumptions on
the transition probabilitymatrix, the problem is quadratic,
since the number of parameters is m2 + 2m − 1 in the
case of Poisson-HMMs, and m2 + 3m − 1 in the case of
NB-HMMs.
A compromise has therefore to be found between the

model fit and themodel complexity.Model selection crite-
ria are used to balance the two situations. They are either
based on the full-model log-likelihood (AIC and BIC)
[77,86-88], or on reducing the number of parameters by
making assumptions on the state-dependent distribution
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Figure 4 Diagnostic plots based on normal ordinary pseudo-residuals. Rows correspond to (1) index plots of the normal pseudo-residuals with
horizontal lines at ±1.96 (2.5% and 97.5%) and ±2.58 (0.5% and 99.5%), (2) histograms of the normal pseudo-residuals with normal distribution
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or on the transition probability matrix in the case of
HMMs [89,90]. Hypothesis tests, as LRT, can also be used
in this context. They have the advantage to allow decisions
with a significance level. In this study, LRT and AIC select
the same NB-HMMs, which seem to be the best fit for
parasite and leukocyte distributions per field on selected
TBSs. However, BIC selects less complex NB-HMMs. To
the best of the authors’ knowledge, there is no common
acceptance of the best criteria for determining the num-
ber of states. This issue can best be summarized by a quote
from famous Bayesian statistician George Box, who said:
“All Models are wrong, but some are useful” [91].
While it is true that, when fitted to the parasite and

leukocyte data, the NB-HMM performed slightly better
than the Poisson-HMM on the basis of AIC and BIC, both
are reasonable models capable of describing the principal
features of the data without using an excessive number of
parameters. The NB-HMM perhaps has the advantage to
incorporate an extra parameter to allow for overdispersion
in parasite and leukocyte counts. However, with small dif-
ferences in AIC (or BIC) score, i.e:	AIC< 10 (or	BIC<

10), a statistician may be tempted to choose the Poisson-
HMM, which is computationally tractable, rather than its
NB counterpart. Either more observations from TBSs or a
convincing biological interpretation for one model rather
than the other would be needed to take the discussion fur-
ther. Contrary to the assumptions implicit within widely
used simple parametric models, the fit to mixtures and
HMMs viewed together are a reflection of the need for

an heterogeneous modelling approach that explores the
overdispersion in parasite and leukocyte counts.
While at first glance intuitively appealing for a statis-

tician, detecting overdispersion in data is of highly
questionable utility for malariologists. From a statistical
standpoint, failure to take overdispersion into account
leads to serious underestimation of the standard errors,
biased parameter estimates and misleading inferences
[92]. In addition, changes in deviance (likelihood ratio
statistic) will be very large and overly complex models will
be selected accordingly. When overdispersion is present
and ignored, using the Poisson model may overstate the
significance of some covariates [93] or give inconclusive
evidence of interactions among them [24]. From an epi-
demiological point of view, the importance of checking for
overdispersion in parasite and leukocyte data stems from
the need for epidemiological interpretations to be based
on solid evidence. However, most existing PD estimation
methods assume homogeneity in the distribution of para-
sites and leukocytes in TBSs. This assumption clearly does
not hold. Likewise, the distribution of blood thickness
within the smear will never be completely homogeneous
[19], even under optimal conditions. Hence, the validity
of the results of many statistical analyses, where PD is
related to other explanatory variables, becomes suspect.
For example, Enosse et al. [17] used a Poisson regres-
sion to estimate the RTS,S/AS02A malaria vaccine effect,
adjusted for parasite density, age, and time to infection.
However, the comparison of the analysis outcomes with
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the primary outcomes of a non-parametric analysis using
Mann-Whitney U test appears to show discrepancies. The
authors concluded that the Poisson distribution did not
adequately describe the data. Another example is the use
of logistic regression to model the risk of fever as a con-
tinuous function of parasite density in order to estimate
the fraction of fever attributable to malaria and to estab-
lish a case definition for the diagnosis of clinical malaria
[13,15,94]. Case definition for symptomatic malaria is
widely used in endemic areas. It requires fever together
with a parasite density above a specific threshold. Even
under declining levels of malaria endemicity, this method
remains the reference method for discriminating malaria
from other causes of fever and assessing malaria burden
and trends [95]. Such estimates of the attributable fraction
may be imprecise if the PD is not being estimated cor-
rectly. Furthermore, PD estimation methods potentially
induce variability [10]. A proportion of this variability may
be explained by the heterogeneity factor. An alternative
PD estimation method that accounts for heterogeneity
and spatial dependence between parasites and leukocytes
in TBSs should be seriously considered in future epidemi-
ological studies with field-collected PD data.

Additional files

Additional file 1: Parasite and leukocyte counts per HPF.The data
comprise the records of three TBSs of 12-month-old children from a field
study of Plasmodium falciparummalaria in Tori Bossito, Benin. All HPFs were
examined systemically by visually scanning the film horizontally from edge
to edge. The numbers of parasites and the number of leukocytes per HPF
were recorded.

Additional file 2: EM for mixtures and HMMs.The statistical tools used
to fit the distribution of parasite and leukocyte counts per HPF are
presented including the EM algorithm with applications to mixture models
and HMMs with Poisson and NB state-dependent distributions.
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