253 research outputs found

    Global metabolic analyses of acinetobacter baumannii

    Get PDF
    Acinetobacter baumannii is rapidly emerging as a multidrug-resistant pathogen responsible for nosocomial infections including pneumonia, bacteremia, wound infections, urinary tract infections, and meningitis. Metabolomics provides a powerful tool to gain a system-wide snapshot of cellular biochemical networks under defined conditions and has been increasingly applied to bacterial physiology and drug discovery. Here we describe an optimized sample preparation method for untargeted metabolomics studies in A. baumannii. Our method provides a significant recovery of intracellular metabolites to demonstrate substantial differences in global metabolic profiles among A. baumannii strains

    Individualizing therapy – in search of approaches to maximize the benefit of drug treatment (II)

    Get PDF
    Adjusting drug therapy to the individual, a common approach in clinical practice, has evolved from 1) dose adjustments based on clinical effects to 2) dose adjustments made in response to drug levels and, more recently, to 3) dose adjustments based on deoxyribonucleic acid (DNA) sequencing of drug-metabolizing enzyme genes, suggesting a slow drug metabolism phenotype. This development dates back to the middle of the 20(th )century, when several different drugs were administered on the basis of individual plasma concentration measurements. Genetic control of drug metabolism was well established by the 1960s, and pharmakokinetic-based individualized therapy was in use by 1973

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Determination of Therapeutic Equivalence of Generic Products of Gentamicin in the Neutropenic Mouse Thigh Infection Model

    Get PDF
    Background: Drug regulatory agencies (DRA) support prescription of generic products of intravenous antibiotics assuming therapeutic equivalence from pharmaceutical equivalence. Recent reports of deaths associated with generic heparin and metoprolol have raised concerns about the efficacy and safety of DRA-approved drugs. Methodology/Principal Findings: To challenge the assumption that pharmaceutical equivalence predicts therapeutic equivalence, we determined in vitro and in vivo the efficacy of the innovator product and 20 pharmaceutically equivalent generics of gentamicin. The data showed that, while only 1 generic product failed in vitro (MIC = 45.3 vs. 0.7 mg/L, P,0.05), 10 products (including gentamicin reference powder) failed in vivo against E. coli due to significantly inferior efficacy (E max = 4.81 to 5.32 vs. 5.99 log 10 CFU/g, P#0.043). Although the design lacked power to detect differences in survival after thigh infection with P. aeruginosa, dissemination to vital organs was significantly higher in animals treated with generic gentamicin despite 4 days of maximally effective treatment. Conclusion: Pharmaceutical equivalence does not predict therapeutic equivalence of generic gentamicin. Stricter criteri

    Reading Comprehension and Reading Comprehension Difficulties

    Get PDF
    corecore