219 research outputs found

    Rapid detection of carriers with BRCA1 and BRCA2 mutations using high resolution melting analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germline inactivating mutations in <it>BRCA1 </it>and <it>BRCA2 </it>underlie a major proportion of the inherited predisposition to breast and ovarian cancer. These mutations are usually detected by DNA sequencing. Cost-effective and rapid methods to screen for these mutations would enable the extension of mutation testing to a broader population. High resolution melting (HRM) analysis is a rapid screening methodology with very low false negative rates. We therefore evaluated the use of HRM as a mutation scanning tool using, as a proof of principle, the three recurrent BRCA1 and BRCA2 founder mutations in the Ashkenazi Jewish population in addition to other mutations that occur in the same regions.</p> <p>Methods</p> <p>We designed PCR amplicons for HRM scanning of <it>BRCA1 </it>exons 2 and 20 (carrying the founder mutations185delAG and 5382insC respectively) and the part of the <it>BRCA2 </it>exon 11 carrying the 6174delT founder mutation. The analysis was performed on an HRM-enabled real time PCR machine.</p> <p>Results</p> <p>We tested DNA from the peripheral blood of 29 individuals heterozygous for known mutations. All the Ashkenazi founder mutations were readily identified. Other mutations in each region that were also readily detected included the recently identified Greek founder mutation 5331G>A in exon 20 of <it>BRCA1</it>. Each mutation had a reproducible melting profile.</p> <p>Conclusion</p> <p>HRM is a simple and rapid scanning method for known and unknown <it>BRCA1 </it>and <it>BRCA2 </it>germline mutations that can dramatically reduce the amount of sequencing required and reduce the turnaround time for mutation screening and testing. In some cases, such as tracking mutations through pedigrees, sequencing may only be necessary to confirm positive results. This methodology will allow for the economical screening of founder mutations not only in people of Ashkenazi Jewish ancestry but also in other populations with founder mutations such as Central and Eastern Europeans (<it>BRCA1 </it>5382insC) and Greek Europeans (<it>BRCA1 </it>5331G>A).</p

    The influence of physical exercise on the generation of TGF-β1, PDGF-AA, and VEGF-A in adipose tissue

    Get PDF
    Adipose tissue is an important organ that produces and secretes hormones and cytokines, including TGF-β1, PDGF-AA, and VEGF-A. The goal of the present study was to investigate the influence of a single session of acute exercise, as well as the prolonged endurance training on the production of TGF-β1, PDGF-AA, and VEGF-A in the subcutaneous white adipose tissue in rats. Rats were randomly divided into two groups: untrained (UT, n = 30) and trained rats (T, subjected to 6-week endurance training with increasing load, n = 29). Both groups were subjected to an acute exercise session with the same work load. The rats were killed before (UTpre, Tpre), immediately after (UT0h, T0h), or 3 h (UT3h, T3h) after exercise and adipose tissue samples collected. Growth factor mRNA was evaluated using RT-PCR; the protein levels were measured before and after training (UTpre and Tpre) using the immunoenzymatic method. TGF-β1 and PDGF-AA mRNA levels were decreased in the UT3h rats compared to the UTpre rats (P = 0.0001 and P = 0.03, respectively), but the VEGF-A mRNA level remained unchanged in the UT0h and UT3h rats compared to UTpre rats. TGF-β1, PDGF-AA and VEGF-A mRNA levels were decreased in the T3h rats compared to Tpre (P = 0.0002, P = 0.02, and P = 0.03, respectively). TGF-β1, PDGF-AA and VEGF-A mRNA levels significantly increased in the Tpre rats compared to UTpre (all P = 0.0002). However, the protein levels remained constant. In conclusion, prolonged physical exercise increases growth factor mRNA in adipose tissue but not protein levels

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    The estrogen-injected female mouse: new insight into the etiology of PCOS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Female mice and rats injected with estrogen perinatally become anovulatory and develop follicular cysts. The current consensus is that this adverse response to estrogen involves the hypothalamus and occurs because of an estrogen-induced alteration in the GnRH delivery system. Whether or not this is true has yet to be firmly established. The present study examined an alternate possibility in which anovulation and cyst development occurs through an estrogen-induced disruption in the immune system, achieved through the intermediation of the thymus gland.</p> <p>Methods, Results and Conclusion</p> <p>A putative role for the thymus in estrogen-induced anovulation and follicular cyst formation (a model of PCOS) was examined in female mice by removing the gland prior to estrogen injection. Whereas all intact, female mice injected with 20 ug estrogen at 5–7 days of age had ovaries with follicular cysts, no cysts were observed in animals in which thymectomy at 3 days of age preceded estrogen injection. In fact, after restoring immune function by thymocyte replacement, the majority of thymectomized, estrogen-injected mice had ovaries with corpora lutea. Thus, when estrogen is unable to act on the thymus, ovulation occurs and follicular cysts do not develop. This implicates the thymus in the cysts' genesis and discounts the role of the hypothalamus. Subsequent research established that the disease is transferable by lymphocyte infusion. Transfer took place between 100-day-old estrogen-injected and 15-day-old naïve mice only when recipients were thymectomized at 3 days of age. Thus, a prerequisite for cyst formation is the absence of regulatory T cells. Their absence in donor mice was judged to be the result of an estrogen-induced increase in the thymus' vascular permeability, causing de facto circumvention of the final stages of regulatory T cell development. The human thymus has a similar vulnerability to steroid action during the fetal stage. We propose that in utero exposure to excessive levels of steroids such as estrogen has a long-term effect on the ability of the thymus to produce regulatory T cells. In female offspring this can lead to PCOS.</p

    Hippocampal Deletion of BDNF Gene Attenuates Gamma Oscillations in Area CA1 by Up-Regulating 5-HT3 Receptor

    Get PDF
    Background: Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown. Methodology/Principal Findings: Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this receptor partially restored power of gamma oscillations in slices from KO mice, but had no effect in slices from WT mice. Conclusion/Significance: These data suggest that BDNF facilitates gamma oscillations in the hippocampus by attenuating signaling through 5-HT3 receptor. Thus, BDNF modulates hippocampal oscillations through serotonergic system

    Steroid Hormone Control of Cell Death and Cell Survival: Molecular Insights Using RNAi

    Get PDF
    The insect steroid hormone ecdysone triggers programmed cell death of obsolete larval tissues during metamorphosis and provides a model system for understanding steroid hormone control of cell death and cell survival. Previous genome-wide expression studies of Drosophila larval salivary glands resulted in the identification of many genes associated with ecdysone-induced cell death and cell survival, but functional verification was lacking. In this study, we test functionally 460 of these genes using RNA interference in ecdysone-treated Drosophila l(2)mbn cells. Cell viability, cell morphology, cell proliferation, and apoptosis assays confirmed the effects of known genes and additionally resulted in the identification of six new pro-death related genes, including sorting nexin-like gene SH3PX1 and Sox box protein Sox14, and 18 new pro-survival genes. Identified genes were further characterized to determine their ecdysone dependency and potential function in cell death regulation. We found that the pro-survival function of five genes (Ras85D, Cp1, CG13784, CG32016, and CG33087), was dependent on ecdysone signaling. The TUNEL assay revealed an additional two genes (Kap-α3 and Smr) with an ecdysone-dependent cell survival function that was associated with reduced cell death. In vitro, Sox14 RNAi reduced the percentage of TUNEL-positive l(2)mbn cells (p<0.05) following ecdysone treatment, and Sox14 overexpression was sufficient to induce apoptosis. In vivo analyses of Sox14-RNAi animals revealed multiple phenotypes characteristic of aberrant or reduced ecdysone signaling, including defects in larval midgut and salivary gland destruction. These studies identify Sox14 as a positive regulator of ecdysone-mediated cell death and provide new insights into the molecular mechanisms underlying the ecdysone signaling network governing cell death and cell survival

    Enhanced Auditory Brainstem Response and Parental Bonding Style in Children with Gastrointestinal Symptoms

    Get PDF
    The electrophysiological properties of the brain and influence of parental bonding in childhood irritable bowel syndrome (IBS) are unclear. We hypothesized that children with chronic gastrointestinal (GI) symptoms like IBS may show exaggerated brainstem auditory evoked potential (BAEP) responses and receive more inadequate parental bonding. = 0.024). Multiple regression analysis in females also supported these findings.It is suggested that children with chronic GI symptoms have exaggerated brainstem responses to environmental stimuli and inadequate parental behaviors aggravate these symptoms

    The biological basis and clinical significance of hormonal imprinting, an epigenetic process

    Get PDF
    The biological phenomenon, hormonal imprinting, was named and defined by us (Biol Rev, 1980, 55, 47-63) 30 years ago, after many experimental works and observations. Later, similar phenomena were also named to epigenetic imprinting or metabolic imprinting. In the case of hormonal imprinting, the first encounter between a hormone and its developing target cell receptor—usually at the perinatal period—determines the normal receptor-hormone connection for life. However, in this period, molecules similar to the target hormone (members of the same hormone family, synthetic drugs, environmental pollutants, etc), which are also able to bind to the receptor, provoke faulty imprinting also with lifelong—receptorial, behavioral, etc.,—consequences. Faulty hormonal imprinting could also be provoked later in life in continuously dividing cells and in the brain. Faulty hormonal imprinting is a disturbance of gene methylation pattern, which is epigenenetically inherited to the further generations (transgenerational imprinting). The absence of the normal or the presence of false hormonal imprinting predispose to or manifested in different diseases (e.g., malignant tumors, metabolic syndrome) long after the time of imprinting or in the progenies

    Nucleolus: the fascinating nuclear body

    Get PDF
    Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins. RNA polymerase I synthesizes the ribosomal RNAs and this activity is cell cycle regulated. The nucleolus reveals the functional organization of the nucleus in which the compartmentation of the different steps of ribosome biogenesis is observed whereas the nucleolar machineries are in permanent exchange with the nucleoplasm and other nuclear bodies. After mitosis, nucleolar assembly is a time and space regulated process controlled by the cell cycle. In addition, by generating a large volume in the nucleus with apparently no RNA polymerase II activity, the nucleolus creates a domain of retention/sequestration of molecules normally active outside the nucleolus. Viruses interact with the nucleolus and recruit nucleolar proteins to facilitate virus replication. The nucleolus is also a sensor of stress due to the redistribution of the ribosomal proteins in the nucleoplasm by nucleolus disruption. The nucleolus plays several crucial functions in the nucleus: in addition to its function as ribosome factory of the cells it is a multifunctional nuclear domain, and nucleolar activity is linked with several pathologies. Perspectives on the evolution of this research area are proposed

    Cerebral cortex expression of Gli3 is required for normal development of the lateral olfactory tract

    Get PDF
    <div><p>Formation of the lateral olfactory tract (LOT) and innervation of the piriform cortex represent fundamental steps to allow the transmission of olfactory information to the cerebral cortex. Several transcription factors, including the zinc finger transcription factor Gli3, influence LOT formation by controlling the development of mitral cells from which LOT axons emanate and/or by specifying the environment through which these axons navigate. <i>Gli3</i> null and hypomorphic mutants display severe defects throughout the territory covered by the developing lateral olfactory tract, making it difficult to identify specific roles for <i>Gli3</i> in its development. Here, we used <i>Emx1Cre</i>;<i>Gli3</i><sup><i>fl/fl</i></sup> conditional mutants to investigate LOT formation and colonization of the olfactory cortex in embryos in which loss of <i>Gli3</i> function is restricted to the dorsal telencephalon. These mutants form an olfactory bulb like structure which does not protrude from the telencephalic surface. Nevertheless, mitral cells are formed and their axons enter the piriform cortex though the LOT is shifted medially. Mitral axons also innervate a larger target area consistent with an enlargement of the piriform cortex and form aberrant projections into the deeper layers of the piriform cortex. No obvious differences were found in the expression patterns of key guidance cues. However, we found that an expansion of the piriform cortex temporally coincides with the arrival of LOT axons, suggesting that <i>Gli3</i> affects LOT positioning and target area innervation through controlling the development of the piriform cortex.</p></div
    corecore