10 research outputs found

    Feasibility studies for the measurement of time-like proton electromagnetic form factors from p¯ p→ μ+μ- at P ¯ ANDA at FAIR

    Get PDF
    This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, | GE| and | GM| , using the p¯ p→ μ+μ- reaction at P ¯ ANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at P ¯ ANDA , using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is p¯ p→ π+π-, due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distributions of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented

    Avaliação sorológica para Toxoplasma gondii pela imunofluorescência indireta e detecção do vírus da imunodeficiência felina pela nested PCR em felinos selvagens Serological evaluation for Toxoplasma gondii by indirect immunofluorescence and detection of feline immunodeficiency virus by nested PCR in wild felines

    No full text
    Nineteen sera and blood samples from wild feline kept in captivity were tested for Toxoplasma gondii antibody and presence of feline immunodeficiency virus (FIV) DNA, respectively. Eighteen (94.7%) of the them were seropositive for toxoplasma. However, the only negative animal, a Leopardus pardalis, was the only FIV positve. These results suggest that the infection by FIV may have compromised its immune system and interfered with antibody production for toxoplasma

    The potential of Λ and Ξ- studies with PANDA at FAIR

    Get PDF
    The antiproton experiment PANDA at FAIR is designed to bring hadron physics to a new level in terms of scope, precision and accuracy. In this work, its unique capability for studies of hyperons is outlined. We discuss ground-state hyperons as diagnostic tools to study non-perturbative aspects of the strong interaction, and fundamental symmetries. New simulation studies have been carried out for two benchmark hyperon-antihyperon production channels: p¯ p→ Λ¯ Λ and p¯ p→ Ξ¯ +Ξ-. The results, presented in detail in this paper, show that hyperon-antihyperon pairs from these reactions can be exclusively reconstructed with high efficiency and very low background contamination. In addition, the polarisation and spin correlations have been studied, exploiting the weak, self-analysing decay of hyperons and antihyperons. Two independent approaches to the finite efficiency have been applied and evaluated: one standard multidimensional efficiency correction approach, and one efficiency independent approach. The applicability of the latter was thoroughly evaluated for all channels, beam momenta and observables. The standard method yields good results in all cases, and shows that spin observables can be studied with high precision and accuracy already in the first phase of data taking with PANDA

    Feasibility studies for the measurement of time-like proton electromagnetic form factors from pˉpμ+μ\bar{p}p \rightarrow \mu ^+\mu ^- at PANDA\overline{\text {P}}\text {ANDA} at FAIR

    Get PDF
    International audienceThis paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, GE|G_{E}| and GM|G_{M}|, using the pˉpμ+μ\bar{p} p \rightarrow \mu ^{+} \mu ^{-} reaction at PANDA\overline{\text {P}}\text {ANDA} (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at PANDA\overline{\text {P}}\text {ANDA}, using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is pˉpπ+π\bar{p} p \rightarrow \pi ^{+} \pi ^{-}, due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distributions of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented

    Alignment of the CMS tracker with LHC and cosmic ray data

    No full text
    The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm.© CERN 2014 for the benefit of the CMS collaboration.

    Strategies and performance of the CMS silicon tracker alignment during LHC Run 2

    No full text
    The strategies for and the performance of the CMS silicon tracking system alignment during the 2015–2018 data-taking period of the LHC are described. The alignment procedures during and after data taking are explained. Alignment scenarios are also derived for use in the simulation of the detector response. Systematic effects, related to intrinsic symmetries of the alignment task or to external constraints, are discussed and illustrated for different scenarios
    corecore