28 research outputs found

    3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings

    Get PDF
    RATIONALE: 3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. OBJECTIVE: The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of “interspecies scaling” to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. RESULTS: MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1–2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10–20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. CONCLUSIONS: MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks

    Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Pharmacology of MDMA- and Amphetamine-Like New Psychoactive Substances

    Get PDF
    New psychoactive substances (NPS) with amphetamine-, aminoindan-, and benzofuran basic chemical structures have recently emerged for recreational drug use. Detailed information about their psychotropic effects and health risks is often limited. At the same time, it emerged that the pharmacological profiles of these NPS resemble those of amphetamine or 3,4-methylenedioxymethamphetamine (MDMA). Amphetamine-like NPS induce psychostimulation and euphoria mediated predominantly by norepinephrine (NE) and dopamine (DA) transporter (NET and DAT) inhibition and transporter-mediated release of NE and DA, thus showing a more catecholamine-selective profile. MDMA-like NPS frequently induce well-being, empathy, and prosocial effects and have only moderate psychostimulant properties. These MDMA-like substances primarily act by inhibiting the serotonin (5-HT) transporter (SERT) and NET, also inducing 5-HT and NE release. Monoamine receptor interactions vary considerably among amphetamine- and MDMA-like NPS. Clinically, amphetamine- and MDMA-like NPS can induce sympathomimetic toxicity. The aim of this chapter is to review the state of knowledge regarding these substances with a focus on the description of the in vitro pharmacology of selected amphetamine- and MDMA-like NPS. In addition, it is aimed to provide links between pharmacological profiles and in vivo effects and toxicity, which leads to the conclusion that abuse liability for amphetamine-like NPS may be higher than for MDMA-like NPS, but that the risk for developing the life-threatening serotonin syndrome may be increased for MDMA-like NPS

    Predatory hoverflies increase oviposition in response to colour stimuli offering no reward: implications for biological control

    No full text
    © 2015. There are increasing efforts worldwide to engineer agroecosystems to enhance ecosystem services such as carbon storage, minimisation of erosion, and biological control of pests. A key group of insect biological control agents is the hoverflies (Diptera: Syrphidae). While adult Syrphidae are pollen and nectar feeders, the larvae of many species are aphidophagous, thus demonstrating life-history omnivory and their potentially important role in the biological control of aphids and other pests. Several experiments have been conducted to assess whether the presence of flowers in or near crops has an effect on oviposition by syrphids, but the results have often been inconclusive. This paper describes a large-scale field experiment carried out over two years, in which standardised model flowers were placed in field margins and oviposition rates monitored near them. Statistically significantly more eggs were laid on broad bean (Vicia faba) infested with the pea aphid, Acyrthosiphon pisum, near yellow model flowers with and without pollen and honey resources than at positions with no model flowers nearby. These results suggest strongly that the presence of model flowers increases hoverfly oviposition and that colour may be more important than food resources in enhancing this behaviour. This work indicates that biological control of pests by hoverflies can be enhanced by simple, non-floral agroecological interventions

    Model Checking for Safe Navigation Among Humans

    No full text
    Item does not contain fulltextQuantitative Evaluation of Systems: 15th International Conference, QEST 2018, Beijing, China, September 4-7, 201

    Cannabis and Ecstasy/MDMA (3,4-methylenedioxymethamphetamine): an analysis of their neuropsychobiological interactions in recreational users

    No full text
    The majority of recreational Ecstasy/MDMA users (90–98%) also take cannabis. This co-drug usage is often viewed as a methodological confound, which needs to be removed statistically. Here we take a rather different approach, and debate the potential complexities of their psychobiological interactions. The ring-substituted amphetamine derivate MDMA (3,4-methylendioxymethamphetmaine, or ‘Ecstasy’ is a powerful CNS stimulant, whereas cannabis is a relaxant. Their co-usage may reflect opposing effects in three psychobiological areas: arousal, body temperature, and oxidative stress. Firstly MDMA is alerting whereas cannabis is sedating. Secondly MDMA is hyperthermic whereas cannabis is hypothermic. Thirdly MDMA increases oxidative stress whereas cannabinoids are antioxidant. Hence cannabis may modulate the acute and sub-acute reactions to MDMA, reduce the acute hyperthermia induced by MDMA, and ameliorate the oxidative stress caused by MDMA. The limited empirical evidence on each topic will be critically examined. In terms of chronic effects each drug is functionally damaging, so that polydrug users generally display cumulative neurobiological impairments. However in certain aspects their neuropsychobiological effects may interactive rather than additive. In particular, the combined use of cannabis and MDMA may have rather different neuropsychobiological implications, than their separate usage. In order to investigate these potential complexities, future research will need better empirical data on the exact patterns of co-drug usage
    corecore