107 research outputs found

    Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production

    Get PDF
    The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be+ ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will likely herald a significant increase in the amount of antihydrogen available for experimentation, thus facilitating further improvements in studies of fundamental symmetries

    Observation of the decay Λb0<i>→</i> χ<sub>c1</sub>pπ<SUP><i>-</i></SUP>

    Get PDF
    The Cabibbo-suppressed decay Λb0χc1pπ\Lambda_b^0\rightarrow\chi_{c1}p\pi^- is observed for the first time using data from proton-proton collisions corresponding to an integrated luminosity of 6fb1^{-1}, collected with the LHCb detector at a centre-of-mass energy of 13TeV. Evidence for the Λb0χc2pπ\Lambda_b^0\rightarrow\chi_{c2}p\pi^- decay is also found. Using the Λb0χc1pK\Lambda_b^0\rightarrow\chi_{c1}pK^- decay as normalisation channel, the ratios of branching fractions are measured to be B(Λb0χc1pπ)B(Λb0χc1pK)=(6.59±1.01±0.22)×102,B(Λb0χc2pπ)B(Λb0χc1pπ)=0.95±0.30±0.04±0.04,B(Λb0χc2pK)B(Λb0χc1pK)=1.06±0.05±0.04±0.04,\begin{array}{rcl} \frac{ \mathcal{B} (\Lambda_b^0\rightarrow\chi_{c1}p\pi^-)}{\mathcal{B} (\Lambda_b^0\rightarrow\chi_{c1}pK^-)} & = & (6.59 \pm 1.01 \pm 0.22 ) \times 10^{-2} \,, \frac{\mathcal{B} (\Lambda_b^0\rightarrow\chi_{c2}p\pi^-)}{\mathcal{B} (\Lambda_b^0\rightarrow\chi_{c1}p\pi^-)} & = & 0.95 \pm 0.30 \pm 0.04 \pm 0.04 \,, \frac{\mathcal{B} (\Lambda_b^0\rightarrow\chi_{c2}pK^-)}{\mathcal{B} (\Lambda_b^0\rightarrow\chi_{c1}pK^-)} & = & 1.06 \pm 0.05 \pm 0.04 \pm 0.04 \,,\end{array} where the first uncertainty is statistical, the second is systematic and the third is due to the uncertainties in the branching fractions of χc1,2J/ψγ\chi_{c1,2}\rightarrow J/\psi\gamma decays

    Laser cooling of antihydrogen atoms

    Get PDF
    The photon—the quantum excitation of the electromagnetic field—is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. Slowing the translational motion of atoms and ions by application of such a force2,3, known as laser cooling, was first demonstrated 40 years ago4,5. It revolutionized atomic physics over the following decades6–8, and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen9, the antimatter atom consisting of an antiproton and a positron. By exciting the 1S–2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-α laser radiation10,11, we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude—with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S–2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic11–13 and gravitational14 studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules

    Angular Analysis of the B+ -> K*(+)mu(+) mu(-) Decay

    Get PDF
    We present an angular analysis of the B + → K * + ( → K 0 S π + ) μ + μ − decay using 9     fb − 1 of p p collision data collected with the LHCb experiment. For the first time, the full set of C P -averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from standard model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner B 0 → K * 0 μ + μ − decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters

    Precise determination of the B-s(0)-B-s(-0) oscillation frequency

    Get PDF
    Mesons comprising a beauty quark and a strange quark can oscillate between particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, deltams. Here we present ameasurement of deltams using B0s2DsPi decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051 +- 0.0032 ps-1, where the first uncertainty is statistical and the second systematic. This measurement improves upon the current deltams precision by a factor of two. We combine this result with previous LHCb measurements to determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of the original LHCb detector.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-005.html (LHCb public pages

    Search for the doubly heavy baryons Omega(0)(bc) and Xi(0)(bc) decaying to Lambda(+)(c)pi(-) and Xi(+)(c)pi-

    Get PDF
    Abstract available from publisher's website

    First measurement of the Z→μ+μ− angular coefficients in the forward region of pp collisions at √s = 13 TeV

    Get PDF
    The first study of the angular distribution of μ + μ − pairs produced in the forward rapidity region via the Drell-Yan reaction p p → γ ∗ / Z + X → ℓ + ℓ − + X is presented, using data collected with the LHCb detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.1     fb − 1 . The coefficients of the five leading terms in the angular distribution are determined as a function of the dimuon transverse momentum and rapidity. The results are compared to various theoretical predictions of the Z -boson production mechanism and can also be used to probe transverse-momentum-dependent parton distributions within the proton

    Search for rare decays of D0 mesons into two muons

    Get PDF
    A search for the very rare D 0 → μ + μ − decay is performed using data collected by the LHCb experiment in proton-proton collisions at √ s = 7 , 8, and 13 TeV, corresponding to an integrated luminosity of 9     fb − 1 . The search is optimized for D 0 mesons from D * + → D 0 π + decays but is also sensitive to D 0 mesons from other sources. No evidence for an excess of events over the expected background is observed. An upper limit on the branching fraction of this decay is set at B ( D 0 → μ + μ − ) &lt; 3.1 × 10 − 9 at a 90% C.L. This represents the world’s most stringent limit, constraining models of physics beyond the standard model
    corecore