39 research outputs found

    Does the spillage of petroleum products in Anopheles breeding sites have an impact on the pyrethroid resistance?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The emergence of <it>Anopheles </it>populations capable of withstanding lethal doses of insecticides has weakened the efficacy of most insecticide based strategies of vector control and, has highlighted the need for further studies on the mechanisms of insecticide resistance and the various factors selecting resistant populations of mosquitoes. This research targeted the analysis of breeding sites and the oviposition behaviour of susceptible and resistant populations of <it>Anopheles </it>in localities of spilled petroleum products. The aim was to establish the possible contribution of oil spillage in the selection of pyrethroid resistance in malaria vectors.</p> <p>Methods</p> <p><it>Anopheles </it>breeding sites were identified and the insecticide susceptibility of the <it>Anopheles gambiae </it>populations mapped in 15 localities of South Western Nigeria. The presence of oil particles as well as the turbidity, the dissolved oxygen and the pH of each identified breeding site was recorded. Data were cross-analysed to correlate the habitat types and the insecticide susceptibility status of emerging mosquitoes. The second phase of this study was basically a laboratory model to provide more information on the implication of the spillage of petroleum on the selection of pyrethroid resistance in <it>An. gambiae</it>.</p> <p>Results</p> <p>Moderate levels of resistance following exposure to permethrin-impregnated papers were recorded with the majority of <it>An. gambiae </it>samples collected in the South Western Nigeria. Data from this study established a link between the constituency of the breeding sites and the resistance status of the emerging <it>Anopheles</it>.</p> <p>Conclusion</p> <p>This study has revealed the segregational occupation of breeding habitats by pyrethroid resistant and susceptible strains of <it>An. gambiae </it>in south-western Nigeria. Compiled results from field and laboratory research point out clear relationships between oil spillage and pyrethroid resistance in malaria vectors. The identification of this factor of resistance could serve as strong information in the management of insecticide resistance in some West African settings.</p

    Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A fast development of urban agriculture has recently taken place in many areas in the Republic of Benin. This study aims to assess the rapid expansion of urban agriculture especially, its contribution to the emergence of insecticide resistance in populations of <it>Anopheles gambiae</it>.</p> <p>Methods</p> <p>The protocol was based on the collection of sociological data by interviewing vegetable farmers regarding various agricultural practices and the types of pesticides used. Bioassay tests were performed to assess the susceptibility of malaria vectors to various agricultural insecticides and biochemical analysis were done to characterize molecular status of population of <it>An. gambiae</it>.</p> <p>Results</p> <p>This research showed that:</p> <p>(1) The rapid development of urban agriculture is related to unemployment observed in cities, rural exodus and the search for a balanced diet by urban populations;</p> <p>(2) Urban agriculture increases the farmers' household income and their living standard;</p> <p>(3) At a molecular level, PCR revealed the presence of three sub-species of <it>An. gambiae </it>(<it>An. gambiae s.s., Anopheles melas and Anopheles arabiensis</it>) and two molecular forms (M and S). The <it>kdr </it>west mutation recorded in samples from the three sites and more specifically on the M forms seems to be one of the major resistance mechanisms found in <it>An. gambiae </it>from agricultural areas. Insecticide susceptibility tests conducted during this research revealed a clear pattern of resistance to permethrin (76% mortality rate at Parakou; 23.5% at Porto-Novo and 17% at Cotonou).</p> <p>Conclusion</p> <p>This study confirmed an increase activity of the vegetable farming in urban areas of Benin. This has led to the use of insecticide in an improper manner to control vegetable pests, thus exerting a huge selection pressure on mosquito larval population, which resulted to the emergence of insecticide resistance in malaria vectors.</p

    Positional cloning of rp2 QTL associates the P450 genes CYP6Z1, CYP6Z3 and CYP6M7 with pyrethroid resistance in the malaria vector Anopheles funestus

    Get PDF
    Pyrethroid resistance in Anopheles funestus is threatening malaria control in Africa. Elucidation of underlying resistance mechanisms is crucial to improve the success of future control programs. A positional cloning approach was used to identify genes conferring resistance in the uncharacterised rp2 quantitative trait locus (QTL) previously detected in this vector using F6 advanced intercross lines (AIL). A 113 kb BAC clone spanning rp2 was identified and sequenced revealing a cluster of 15 P450 genes and one salivary protein gene (SG7-2). Contrary to A. gambiae, AfCYP6M1 is triplicated in A. funestus, while AgCYP6Z2 orthologue is absent. Five hundred and sixty-five new single nucleotide polymorphisms (SNPs)were identified for genetic mapping from rp2 P450s and other genes revealing high genetic polymorphisms with one SNP every 36 bp. A significant genotype/phenotype association was detected for rp2 P450s but not for a cluster of cuticular protein genes previously associated with resistance in A. gambiae. QTL mapping using F6 AIL confirms the rp2 QTL with an increase logarithm of odds score of 5. Multiplex gene expression profiling of 15 P450s and other genes around rp2 followed by individual validation using qRT–PCR indicated a significant overexpression in the resistant FUMOZ-R strain of the P450s AfCYP6Z1, AfCYP6Z3, AfCYP6M7 and the glutathione-s-transferase GSTe2 with respective fold change of 11.2,6.3, 5.5 and 2.8. Polymorphisms analysis of AfCYP6Z1 and AfCYP6Z3 identified amino acid changes potentially associated with resistance further indicating that these genes are controlling the pyrethroid resistance explained by the rp2 QTL. The characterisation of this rp2 QTL significantly improves our understanding of resistance mechanisms in A. funestus

    Indoor application of attractive toxic sugar bait (ATSB) in combination with mosquito nets for control of pyrethroid-resistant mosquitoes.

    Get PDF
    BACKGROUND: Attractive toxic sugar bait (ATSB) sprayed onto vegetation has been successful in controlling Anopheles mosquitoes outdoors. Indoor application of ATSB has yet to be explored. The purpose of this study was to determine whether ATSB stations positioned indoors have the potential to kill host-seeking mosquitoes and constitute a new approach to control of mosquito-borne diseases. METHODS: Insecticides were mixed with dyed sugar solution and tested as toxic baits against Anopheles arabiensis, An. Gambiae s.s. and Culex quinquefasciatus in feeding bioassay tests to identify suitable attractant-insecticide combinations. The most promising ATSB candidates were then trialed in experimental huts in Moshi, Tanzania. ATSB stations were hung in huts next to untreated mosquito nets occupied by human volunteers. The proportions of mosquitoes killed in huts with ATSB treatments relative to huts with non-insecticide control treatments huts were recorded, noting evidence of dye in mosquito abdomens. RESULTS: In feeding bioassays, chlorfenapyr 0.5% v/v, boric acid 2% w/v, and tolfenpyrad 1% v/v, mixed in a guava juice-based bait, each killed more than 90% of pyrethroid-susceptible An. Gambiae s.s. and pyrethroid-resistant An. arabiensis and Cx. quinquefasciatus. In the hut trial, mortality rates of the three ATSB treatments ranged from 41-48% against An. arabiensis and 36-43% against Cx. quinquefasciatus and all were significantly greater than the control mortalities: 18% for An. arabiensis, 7% for Cx. quinquefasciatus (p<0.05). Mortality rates with ATSB were comparable to those with long lasting insecticidal nets previously tested against the same species in this area. CONCLUSIONS: Indoor ATSB shows promise as a supplement to mosquito nets for controlling mosquitoes. Indoor ATSB constitute a novel application method for insecticide classes that act as stomach poisons and have not hitherto been exploited for mosquito control. Combined with LLIN, indoor use of ATSB has the potential to serve as a strategy for managing insecticide resistance

    The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis

    Get PDF
    Background Pyrethroid insecticide-treated bed nets (ITNs) help contribute to reducing malaria deaths in Africa, but their efficacy is threatened by insecticide resistance in some malaria mosquito vectors. We therefore assessed the evidence that resistance is attenuating the effect of ITNs on entomological outcomes. Methods and Findings We included laboratory and field studies of African malaria vectors that measured resistance at the time of the study and used World Health Organization–recommended impregnation regimens. We reported mosquito mortality, blood feeding, induced exophily (premature exit of mosquitoes from the hut), deterrence, time to 50% or 95% knock-down, and percentage knock-down at 60 min. Publications were searched from 1 January 1980 to 31 December 2013 using MEDLINE, Cochrane Central Register of Controlled Trials, Science Citation Index Expanded, Social Sciences Citation Index, African Index Medicus, and CAB Abstracts. We stratified studies into three levels of insecticide resistance, and ITNs were compared with untreated bed nets (UTNs) using the risk difference (RD). Heterogeneity was explored visually and statistically. Included were 36 laboratory and 24 field studies, reported in 25 records. Studies tested and reported resistance inconsistently. Based on the meta-analytic results, the difference in mosquito mortality risk for ITNs compared to UTNs was lower in higher resistance categories. However, mortality risk was significantly higher for ITNs compared to UTNs regardless of resistance. For cone tests: low resistance, risk difference (RD) 0.86 (95% CI 0.72 to 1.01); moderate resistance, RD 0.71 (95% CI 0.53 to 0.88); high resistance, RD 0.56 (95% CI 0.17 to 0.95). For tunnel tests: low resistance, RD 0.74 (95% CI 0.61 to 0.87); moderate resistance, RD 0.50 (95% CI 0.40 to 0.60); high resistance, RD 0.39 (95% CI 0.24 to 0.54). For hut studies: low resistance, RD 0.56 (95% CI 0.43 to 0.68); moderate resistance, RD 0.39 (95% CI 0.16 to 0.61); high resistance, RD 0.35 (95% CI 0.27 to 0.43). However, with the exception of the moderate resistance category for tunnel tests, there was extremely high heterogeneity across studies in each resistance category (chi-squared test, p<0.00001, I2 varied from 95% to 100%). Conclusions This meta-analysis found that ITNs are more effective than UTNs regardless of resistance. There appears to be a relationship between resistance and the RD for mosquito mortality in laboratory and field studies. However, the substantive heterogeneity in the studies' results and design may mask the true relationship between resistance and the RD, and the results need to be interpreted with caution. Our analysis suggests the potential for cumulative meta-analysis in entomological trials, but further field research in this area will require specialists in the field to work together to improve the quality of trials, and to standardise designs, assessment, and reporting of both resistance and entomological outcomes

    Field efficacy of a new mosaic long-lasting mosquito net (PermaNet® 3.0) against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the spread of pyrethroid-resistance in malaria vectors in Africa, new strategies and tools are urgently needed to better control malaria transmission. The aim of this study was to evaluate the performances of a new mosaic long-lasting insecticidal net (LLIN), i.e. PermaNet<sup>® </sup>3.0, against wild pyrethroid-resistant <it>Anopheles gambiae s.l</it>. in West and Central Africa.</p> <p>Methods</p> <p>A multi centre experimental hut trial was conducted in Malanville (Benin), Vallée du Kou (Burkina Faso) and Pitoa (Cameroon) to investigate the exophily, blood feeding inhibition and mortality induced by PermaNet<sup>® </sup>3.0 (i.e. a mosaic net containing piperonyl butoxide and deltamethrin on the roof) comparatively to the WHO recommended PermaNet<sup>® </sup>2.0 (unwashed and washed 20-times) and a conventionally deltamethrin-treated net (CTN).</p> <p>Results</p> <p>The personal protection and insecticidal activity of PermaNet 3.0 and PermaNet<sup>® </sup>2.0 were excellent (>80%) in the "pyrethroid-tolerant" area of Malanville. In the pyrethroid-resistance areas of Pitoa (metabolic resistance) and Vallée du Kou (presence of the L1014F <it>kdr </it>mutation), PermaNet<sup>® </sup>3.0 showed equal or better performances than PermaNet<sup>® </sup>2.0. It should be noted however that the deltamethrin content on PermaNet<sup>® </sup>3.0 was up to twice higher than that of PermaNet<sup>® </sup>2.0. Significant reduction of efficacy of both LLIN was noted after 20 washes although PermaNet<sup>® </sup>3.0 still fulfilled the WHO requirement for LLIN.</p> <p>Conclusion</p> <p>The use of combination nets for malaria control offers promising prospects. However, further investigations are needed to demonstrate the benefits of using PermaNet<sup>® </sup>3.0 for the control of pyrethroid resistant mosquito populations in Africa.</p

    Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. This study reported the spatial and seasonal variations of insecticide resistance in malaria vectors in Benin, West Africa.</p> <p>Methods</p> <p><it>Anopheles gambiae s.l </it>populations were collected from October 2008 to June 2010 in four sites selected on the basis of different use of insecticides and environment. WHO susceptibility tests were carried out to detect resistance to DDT, fenitrothion, bendiocarb, permethrin and deltamethrin. The synergist piperonyl butoxide was used to assess the role of non-target site mechanisms in pyrethroid resistance. <it>Anopheles gambiae </it>mosquitoes were identified to species and to molecular M and S forms using PCR techniques. Molecular and biochemical assays were carried out to determine <it>kdr </it>and <it>Ace.1<sup>R </sup></it>allelic frequencies and activity of the detoxification enzymes.</p> <p>Results</p> <p>Throughout the surveys very high levels of mortality to bendiocarb and fenitrothion were observed in <it>An. gambiae s.l</it>. populations. However, high frequencies of resistance to DDT and pyrethroids were seen in both M and S form of <it>An. gambiae s.s</it>. and <it>Anopheles arabiensis</it>. PBO increased the toxicity of permethrin and restored almost full susceptibility to deltamethrin. <it>Anopheles gambiae s.l</it>. mosquitoes from Cotonou and Malanville showed higher oxidase activity compared to the Kisumu susceptible strain in 2009, whereas the esterase activity was higher in the mosquitoes from Bohicon in both 2008 and 2009. A high frequency of <it>1014F kdr </it>allele was initially showed in <it>An. gambiae </it>from Cotonou and Tori-Bossito whereas it increased in mosquitoes from Bohicon and Malanville during the second year. For the first time the <it>L1014S kdr </it>mutation was found in <it>An. arabiensis </it>in Benin. The <it>ace.1<sup>R </sup></it>mutation was almost absent <it>in An. gambiae s.l</it>.</p> <p>Conclusion</p> <p>Pyrethroid and DDT resistance is widespread in malaria vector in Benin and both metabolic and target site resistance are implicated. Resistance was not correlated with a change of malaria species and/or molecular forms. The <it>1014S kdr </it>allele was first identified in wild population of <it>An. arabiensis </it>hence confirming the expansion of pyrethroid resistance alleles in Africa.</p

    Malaria infection and disease in an area with pyrethroid-resistant vectors in southern Benin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to investigate baseline data on malaria before the evaluation of new vector control strategies in an area of pyrethroid-resistance of vectors. The burden of malaria was estimated in terms of infection (prevalence and parasite density) and of clinical episodes.</p> <p>Methods</p> <p>Between December 2007 and December 2008 in the health district of Ouidah - Kpomassè - Tori Bossito (southern Benin), a descriptive epidemiological survey of malaria was conducted. From 28 selected villages, seven were randomized from which a total of 440 children aged 0 to 5 years were randomly selected. Clinical and parasitological information was obtained by active case detection of malaria episodes carried out during eight periods of six consecutive days scheduled at six weekly intervals and by cross-sectional surveys of asymptomatic infection. Entomological information was also collected. The ownership, the use and the correct use of long-lasting insecticide-treated nets (LLINs) were checked over weekly-survey by unannounced visits at home in the late evening.</p> <p>Results</p> <p>Mean parasite density in asymptomatic children was 586 <it>P. falciparum </it>asexual forms per μL of blood (95%CI 504-680). Pyrogenic parasite cut-off was estimated 2,000 <it>P. falciparum </it>asexual blood forms per μL. The clinical incidence of malaria was 1.5 episodes per child per year (95%CI 1.2-1.9). Parasitological and clinical variables did not vary with season. <it>Anopheles gambiae </it><it>s.l</it>. was the principal vector closely followed by <it>Anopheles funestus</it>. Entomological inoculation rate was 5.3 (95%CI 1.1-25.9) infective bites per human per year. Frequency of the L1014F <it>kdr </it>(West) allele was around 50%. Annual prevalence rate of <it>Plasmodium falciparum </it>asymptomatic infection was 21.8% (95%CI 19.1-24.4) and increased according to age. Mean rates of ownership and use of LLINs were 92% and 70% respectively. The only correct use of LLINs (63%) conferred 26% individual protection against only infection (OR = 0.74 (95%IC 0.62-0.87), p = 0.005).</p> <p>Conclusion</p> <p>The health district of Ouidah-Kpomassè-Tori Bossito is a mesoendemic area with a moderate level of pyrethroid-resistance of vectors. The used LLINs rate was high and only the correct use of LLINs was found to reduce malaria infection without influencing malaria morbidity.</p

    Comparative Genomics of the Anopheline Glutathione S-Transferase Epsilon Cluster

    Get PDF
    Enzymes of the glutathione S-transferase (GST) family play critical roles in detoxification of xenobiotics across many taxa. While GSTs are ubiquitous both in animals and plants, the GST epsilon class (GSTE) is insect-specific and has been associated with resistance to chemical insecticides. While both Aedes aegypti and Anopheles gambiae GSTE clusters consist of eight members, only four putative orthologs are identifiable between the species, suggesting independent expansions of the class in each lineage. We used a primer walking approach, sequencing almost the entire cluster from three Anopheles species (An. stephensi, An. funestus (both Cellia subgenus) and An. plumbeus (Anopheles subgenus)) and compared the sequences to putative orthologs in An. gambiae (Cellia) in an attempt to trace the evolution of the cluster within the subfamily Anophelinae. Furthermore, we measured transcript levels from the identified GSTE loci by real time reverse transcription PCR to determine if all genes were similarly transcribed at different life stages. Among the species investigated, gene order and orientation were similar with three exceptions: (i) GSTE1 was absent in An. plumbeus; (ii) GSTE2 is duplicated in An. plumbeus and (iii) an additional transcriptionally active pseudogene (ψAsGSTE2) was found in An. stephensi. Further statistical analysis and protein modelling gave evidence for positive selection on codons of the catalytic site in GSTE5 albeit its origin seems to predate the introduction of chemical insecticides. Gene expression profiles revealed differences in expression pattern among genes at different life stages. With the exception of GSTE1, ψAsGSTE2 and GSTE2b, all Anopheles species studied share orthologs and hence we assume that GSTE expansion generally predates radiation into subgenera, though the presence of GSTE1 may also suggest a recent duplication event in the Old World Cellia subgenus, instead of a secondary loss. The modifications of the catalytic site within GSTE5 may represent adaptations to new habitats
    corecore