222 research outputs found

    An analysis of ophthalmology services in Finland - has the time come for a Public-Private Partnership?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We studied the prerequisites for Public-Private Partnership (PPP) in the context of the Finnish health care system and more specifically in the field of ophthalmology. PPP can be defined as a more or less permanent cooperation between public and private actors, through which the joint products or services are developed and in which the risks, costs and profits are shared.</p> <p>The Finnish eye care services system is heterogeneous with several different providers and can be regarded as sub-optimal in terms of overall resource use. What is more, the public sector is suffering from a shortage of ophthalmologists, which further decreases its possibilities to meet the present needs. As ophthalmology has traditionally been a medical specialty with a substantial private sector involvement in service provision, PPP could be a feasible policy to be used in the field. We thus ask the following research question: Is there, and to what extent, an open window of opportunity for PPP?</p> <p>Methods</p> <p>In addition to the previously published literature, the research data consisted of 17 thematic interviews with public and private experts in the field of ophthalmology. The analysis was conducted in two stages. First, a literature-based content analysis was used to explore the prerequisites for PPP. Second, Kingdon's (1995) multiple streams theory was used to study the opening of the window of opportunity for PPP.</p> <p>Results</p> <p>Public and private parties reported similar problems in the current situation but defined them differently. Also, there is no consensus on policy alternatives. Public opinion seems to be somewhat uncertain as to the attitudes towards private service providers. The analysis thus showed that although there are prerequisites for PPP, the time has not yet come for a Public-Private Partnership.</p> <p>Conclusion</p> <p>Should the window open fully, the emergence of policy entrepreneurs and an opportunity for a win-win situation between public and private organizations are required.</p

    Autonomous indoor wayfinding for individuals with cognitive impairments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A challenge to individuals with cognitive impairments in wayfinding is how to remain oriented, recall routines, and travel in unfamiliar areas in a way relying on limited cognitive capacity. While people without disabilities often use maps or written directions as navigation tools or for remaining oriented, this cognitively-impaired population is very sensitive to issues of abstraction (e.g. icons on maps or signage) and presents the designer with a challenge to tailor navigation information specific to each user and context.</p> <p>Methods</p> <p>This paper describes an approach to providing distributed cognition support of travel guidance for persons with cognitive disabilities. A solution is proposed based on passive near-field RFID tags and scanning PDAs. A prototype is built and tested in field experiments with real subjects. The unique strength of the system is the ability to provide unique-to-the-user prompts that are triggered by context. The key to the approach is to spread the context awareness across the system, with the context being flagged by the RFID tags and the appropriate response being evoked by displaying the appropriate path guidance images indexed by the intersection of specific end-user and context ID embedded in RFID tags.</p> <p>Results</p> <p>We found that passive RFIDs generally served as good context for triggering navigation prompts, although individual differences in effectiveness varied. The results of controlled experiments provided more evidence with regard to applicabilities of the proposed autonomous indoor wayfinding method.</p> <p>Conclusions</p> <p>Our findings suggest that the ability to adapt indoor wayfinding devices for appropriate timing of directions and standing orientation will be particularly important.</p

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Emulsified Nanoparticles Containing Inactivated Influenza Virus and CpG Oligodeoxynucleotides Critically Influences the Host Immune Responses in Mice

    Get PDF
    Antigen sparing and cross-protective immunity are regarded as crucial in pandemic influenza vaccine development. Both targets can be achieved by adjuvantation strategy to elicit a robust and broadened immune response. We assessed the immunogenicity of an inactivated H5N1 whole-virion vaccine (A/Vietnam/1194/2004 NIBRG-14, clade 1) formulated with emulsified nanoparticles and investigated whether it can induce cross-clade protecting immunity.After formulation with PELC, a proprietary water-in-oil-in-water nanoemulsion comprising of bioresorbable polymer/Span(R)85/squalene, inactivated virus was intramuscularly administered to mice in either one-dose or two-dose schedule. We found that the antigen-specific serum antibody responses elicited after two doses of non-adjuvanted vaccine were lower than those observed after a single dose of adjuvanted vaccine, PELC and the conventional alum adjuvant as well. Moreover, 5 microg HA of PELC-formulated inactivated virus were capable of inducing higher antibodies than those obtained from alum-adjuvanted vaccine. In single-dose study, we found that encapsulating inactivated virus into emulsified PELC nanoparticles could induce better antibody responses than those formulated with PELC-adsorbed vaccine. However, the potency was rather reduced when the inactivated virus and CpG (an immunostimulatory oligodeoxynucleotide containing unmethylated cytosine-guanosine motifs) were co-encapsulated within the emulsion. Finally, the mice who received PELC/CpG(adsorption)-vaccine could easily and quickly reach 100% of seroprotection against a homologous virus strain and effective cross-protection against a heterologous virus strain (A/Whooper swan/Mongolia/244/2005, clade 2.2).Encapsulating inactivated H5N1 influenza virus and CpG into emulsified nanoparticles critically influences the humoral responses against pandemic influenza. These results demonstrated that the use of PELC could be as antigen-sparing in preparation for a potential shortage of prophylactic vaccines against local infectious diseases, in particular pandemic influenza. Moreover, the cross-clade neutralizing antibody responses data verify the potential of such adjuvanted H5N1 candidate vaccine as an effective tool in pre-pandemic preparedness

    Cell autonomous expression of inflammatory genes in biologically aged fibroblasts associated with elevated NF-kappaB activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic inflammation is a well-known corollary of the aging process and is believed to significantly contribute to morbidity and mortality of many age-associated chronic diseases. However, the mechanisms that cause age-associated inflammatory changes are not well understood. Particularly, the contribution of cell stress responses to age-associated inflammation in 'non-inflammatory' cells remains poorly defined. The present cross-sectional study focused on differences in molecular signatures indicative of inflammatory states associated with biological aging of human fibroblasts from donors aged 22 to 92 years.</p> <p>Results</p> <p>Gene expression profiling revealed elevated steady-state transcript levels consistent with a chronic inflammatory state in fibroblast cell-strains obtained from older donors. We also observed enhanced NF-κB DNA binding activity in a subset of strains, and the NF-κB profile correlated with mRNA expression levels characteristic of inflammatory processes, which include transcripts coding for cytokines, chemokines, components of the complement cascade and MHC molecules. This intrinsic low-grade inflammatory state, as it relates to aging, occurs in cultured cells irrespective of the presence of other cell types or the <it>in vivo </it>context.</p> <p>Conclusion</p> <p>Our results are consistent with the view that constitutive activation of inflammatory pathways is a phenomenon prevalent in aged fibroblasts. It is possibly part of a cellular survival process in response to compromised mitochondrial function. Importantly, the inflammatory gene expression signature described here is cell autonomous, i.e. occurs in the absence of prototypical immune or pro-inflammatory cells, growth factors, or other inflammatory mediators.</p

    SiteSeek: Post-translational modification analysis using adaptive locality-effective kernel methods and new profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Post-translational modifications have a substantial influence on the structure and functions of protein. Post-translational phosphorylation is one of the most common modification that occur in intracellular proteins. Accurate prediction of protein phosphorylation sites is of great importance for the understanding of diverse cellular signalling processes in both the human body and in animals. In this study, we propose a new machine learning based protein phosphorylation site predictor, SiteSeek. SiteSeek is trained using a novel compact evolutionary and hydrophobicity profile to detect possible protein phosphorylation sites for a target sequence. The newly proposed method proves to be more accurate and exhibits a much stable predictive performance than currently existing phosphorylation site predictors.</p> <p>Results</p> <p>The performance of the proposed model was compared to nine existing different machine learning models and four widely known phosphorylation site predictors with the newly proposed PS-Benchmark_1 dataset to contrast their accuracy, sensitivity, specificity and correlation coefficient. SiteSeek showed better predictive performance with 86.6% accuracy, 83.8% sensitivity, 92.5% specificity and 0.77 correlation-coefficient on the four main kinase families (CDK, CK2, PKA, and PKC).</p> <p>Conclusion</p> <p>Our newly proposed methods used in SiteSeek were shown to be useful for the identification of protein phosphorylation sites as it performed much better than widely known predictors on the newly built PS-Benchmark_1 dataset.</p

    Location and Level of Etk Expression in Neurons Are Associated with Varied Severity of Traumatic Brain Injury

    Get PDF
    Much recent research effort in traumatic brain injury (TBI) has been devoted to the discovery of a reliable biomarker correlating with severity of injury. Currently, no consensus has been reached regarding a representative marker for traumatic brain injury. In this study, we explored the potential of epithelial/endothelial tyrosine kinase (Etk) as a novel marker for TBI.TBI was induced in Sprague Dawley (SD) rats by controlled cortical impact. Brain tissue samples were analyzed by Western blot, Q-PCR, and immunofluorescence staining using various markers including glial fibrillary acidic protein, and epithelial/endothelial tyrosine kinase (Etk). Results show increased Etk expression with increased number and severity of impacts. Expression increased 2.36 to 7-fold relative to trauma severity. Significant upregulation of Etk appeared at 1 hour after injury. The expression level of Etk was inversely correlated with distance from injury site. Etk and trauma/inflammation related markers increased post-TBI, while other tyrosine kinases did not.The observed correlation between Etk level and the number of impacts, the severity of impact, and the time course after impact, as well as its inverse correlation with distance away from injury site, support the potential of Etk as a possible indicator of trauma severity

    Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension.

    Get PDF
    Genetic evidence implicates the loss of bone morphogenetic protein type II receptor (BMPR-II) signaling in the endothelium as an initiating factor in pulmonary arterial hypertension (PAH). However, selective targeting of this signaling pathway using BMP ligands has not yet been explored as a therapeutic strategy. Here, we identify BMP9 as the preferred ligand for preventing apoptosis and enhancing monolayer integrity in both pulmonary arterial endothelial cells and blood outgrowth endothelial cells from subjects with PAH who bear mutations in the gene encoding BMPR-II, BMPR2. Mice bearing a heterozygous knock-in allele of a human BMPR2 mutation, R899X, which we generated as an animal model of PAH caused by BMPR-II deficiency, spontaneously developed PAH. Administration of BMP9 reversed established PAH in these mice, as well as in two other experimental PAH models, in which PAH develops in response to either monocrotaline or VEGF receptor inhibition combined with chronic hypoxia. These results demonstrate the promise of direct enhancement of endothelial BMP signaling as a new therapeutic strategy for PAH

    Activity pacing for osteoarthritis symptom management: study design and methodology of a randomized trial testing a tailored clinical approach using accelerometers for veterans and non-veterans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) is a prevalent chronic disease and a leading cause of disability in adults. For people with knee and hip OA, symptoms (e.g., pain and fatigue) can interfere with mobility and physical activity. Whereas symptom management is a cornerstone of treatment for knee and hip OA, limited evidence exists for behavioral interventions delivered by rehabilitation professionals within the context of clinical care that address how symptoms affect participation in daily activities. Activity pacing, a strategy in which people learn to preplan rest breaks to avoid symptom exacerbations, has been effective as part of multi-component interventions, but hasn't been tested as a stand-alone intervention in OA or as a tailored treatment using accelerometers. In a pilot study, we found that participants who underwent a tailored activity pacing intervention had reduced fatigue interference with daily activities. We are now conducting a full-scale trial.</p> <p>Methods/Design</p> <p>This paper provides a description of our methods and rationale for a trial that evaluates a tailored activity pacing intervention led by occupational therapists for adults with knee and hip OA. The intervention uses a wrist accelerometer worn during the baseline home monitoring period to glean recent symptom and physical activity patterns and to tailor activity pacing instruction based on how symptoms relate to physical activity. At 10 weeks and 6 months post baseline, we will examine the effectiveness of a tailored activity pacing intervention on fatigue, pain, and physical function compared to general activity pacing and usual care groups. We will also evaluate the effect of tailored activity pacing on physical activity (PA).</p> <p>Discussion</p> <p>Managing OA symptoms during daily life activity performance can be challenging to people with knee and hip OA, yet few clinical interventions address this issue. The activity pacing intervention tested in this trial is designed to help people modulate their activity levels and reduce symptom flares caused by too much or too little activity. As a result of this trial, we will be able to determine if activity pacing is more effective than usual care, and among the intervention groups, if an individually tailored approach improves fatigue and pain more than a general activity pacing approach.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01192516">NCT01192516</a></p
    corecore