208 research outputs found

    Dynein structure and power stroke

    Get PDF
    Dynein ATPases are microtubule motors that are critical to diverse processes such as vesicle transport and the beating of sperm tails; however, their mechanism of force generation is unknown. Each dynein comprises a head, from which a stalk and a stem emerge. Here we use electron microscopy and image processing to reveal new structural details of dynein c, an isoform from Chlamydomonas reinhardtii flagella, at the start and end of its power stroke. Both stem and stalk are flexible, and the stem connects to the head by means of a linker approximately 10 nm long that we propose lies across the head. With both ADP and vanadate bound, the stem and stalk emerge from the head 10 nm apart. However, without nucleotide they emerge much closer together owing to a change in linker orientation, and the coiled-coil stalk becomes stiffer. The net result is a shortening of the molecule coupled to an approximately 15-nm displacement of the tip of the stalk. These changes indicate a mechanism for the dynein power stroke

    Evaluation of Daily Low-Dose Prednisolone During Upper Respiratory Tract Infection to Prevent Relapse in Children With Relapsing Steroid-Sensitive Nephrotic Syndrome: The PREDNOS 2 Randomized Clinical Trial

    Get PDF
    Importance: In children with corticosteroid-sensitive nephrotic syndrome, many relapses are triggered by upper respiratory tract infections. Four small studies found that administration of daily low-dose prednisolone for 5 to 7 days at the time of an upper respiratory tract infection reduced the risk of relapse, but the generalizability of their findings is limited by location of the studies and selection of study population. / Objective: To investigate the use of daily low-dose prednisolone for the treatment of upper respiratory tract infection-related relapses. / Design, Setting, and Participants: This double-blind, placebo-controlled randomized clinical trial (Prednisolone in Nephrotic Syndrome [PREDNOS] 2) evaluated 365 children with relapsing steroid-sensitive nephrotic syndrome with and without background immunosuppressive treatment at 122 pediatric departments in the UK from February 1, 2013, to January 31, 2020. Data from the modified intention-to-treat population were analyzed from July 1, 2020, to December 31, 2020. / Interventions: At the start of an upper respiratory tract infection, children received 6 days of prednisolone, 15 mg/m2 daily, or matching placebo preparation. Those already taking alternate-day prednisolone rounded their daily dose using trial medication to the equivalent of 15 mg/m2 daily or their alternate-day dose, whichever was greater. / Main Outcomes and Measures: The primary outcome was the incidence of first upper respiratory tract infection-related relapse. Secondary outcomes included overall rate of relapse, changes in background immunosuppressive treatment, cumulative dose of prednisolone, rates of serious adverse events, incidence of corticosteroid adverse effects, and quality of life. / Results: The modified intention-to-treat analysis population comprised 271 children (mean [SD] age, 7.6 [3.5] years; 174 [64.2%] male), with 134 in the prednisolone arm and 137 in the placebo arm. The number of patients experiencing an upper respiratory tract infection-related relapse was 56 of 131 (42.7%) in the prednisolone arm and 58 of 131 (44.3%) in the placebo arm (adjusted risk difference, -0.02; 95% CI, -0.14 to 0.10; P = .70). No evidence was found that the treatment effect differed according to background immunosuppressive treatment. No significant differences were found in secondary outcomes between the treatment arms. A post hoc subgroup analysis assessing the primary outcome in 54 children of South Asian ethnicity (risk ratio, 0.66; 95% CI, 0.40-1.10) vs 208 children of other ethnicity (risk ratio, 1.11; 95% CI, 0.81-1.54) found no difference in efficacy of intervention in those of South Asian ethnicity (test for interaction P = .09). / Conclusions and Relevance: The results of PREDNOS 2 suggest that administering 6 days of daily low-dose prednisolone at the time of an upper respiratory tract infection does not reduce the risk of relapse of nephrotic syndrome in children in the UK. Further work is needed to investigate interethnic differences in treatment response. / Trial Registration: isrctn.org / Identifier: ISRCTN10900733; EudraCT 2012-003476-39

    Social Modulation during Songbird Courtship Potentiates Midbrain Dopaminergic Neurons

    Get PDF
    Synaptic transmission onto dopaminergic neurons of the mammalian ventral tegmental area (VTA) can be potentiated by acute or chronic exposure to addictive drugs. Because rewarding behavior, such as social affiliation, can activate the same neural circuitry as addictive drugs, we tested whether the intense social interaction of songbird courtship may also potentiate VTA synaptic function. We recorded glutamatergic synaptic currents from VTA of male zebra finches who had experienced distinct social and behavioral conditions during the previous hour. The level of synaptic transmission to VTA neurons, as assayed by the ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to N-methyl-D-aspartic acid (NMDA) glutamate receptor mediated synaptic currents, was increased after males sang to females, and also after they saw females without singing, but not after they sang while alone. Potentiation after female exposure alone did not appear to result from stress, as it was not blocked by inhibition of glucocorticoid receptors. This potentiation was restricted to synapses of dopaminergic projection neurons, and appeared to be expressed postsynaptically. This study supports a model in which VTA dopaminergic neurons are more strongly activated during singing used for courtship than during non-courtship singing, and thus can provide social context-dependent modulation to forebrain areas. More generally, these results demonstrate that an intense social encounter can trigger the same pathways of neuronal plasticity as addictive drugs

    Vitamins A & D Inhibit the Growth of Mycobacteria in Radiometric Culture

    Get PDF
    The role of vitamins in the combat of disease is usually conceptualized as acting by modulating the immune response of an infected, eukaryotic host. We hypothesized that some vitamins may directly influence the growth of prokaryotes, particularly mycobacteria. complex).Vitamins A and D cause dose-dependent inhibition of all three mycobacterial species studied. Vitamin A is consistently more inhibitory than vitamin D. The vitamin A precursor, β-carotene, is not inhibitory, whereas three vitamin A metabolites cause inhibition. Vitamin K has no effect. Vitamin E causes negligible inhibition in a single strain.We show that vitamin A, its metabolites Retinyl acetate, Retinoic acid and 13-cis Retinoic acid and vitamin D directly inhibit mycobacterial growth in culture. These data are compatible with the hypothesis that complementing the immune response of multicellular organisms, vitamins A and D may have heretofore unproven, unrecognized, independent and probable synergistic, direct antimycobacterial inhibitory activity

    Role of the Amygdala in Antidepressant Effects on Hippocampal Cell Proliferation and Survival and on Depression-like Behavior in the Rat

    Get PDF
    The stimulation of adult hippocampal neurogenesis by antidepressants has been associated with multiple molecular pathways, but the potential influence exerted by other brain areas has received much less attention. The basolateral complex of the amygdala (BLA), a region involved in anxiety and a site of action of antidepressants, has been implicated in both basal and stress-induced changes in neural plasticity in the dentate gyrus. We investigated here whether the BLA modulates the effects of the SSRI antidepressant fluoxetine on hippocampal cell proliferation and survival in relation to a behavioral index of depression-like behavior (forced swim test). We used a lesion approach targeting the BLA along with a chronic treatment with fluoxetine, and monitored basal anxiety levels given the important role of this behavioral trait in the progress of depression. Chronic fluoxetine treatment had a positive effect on hippocampal cell survival only when the BLA was lesioned. Anxiety was related to hippocampal cell survival in opposite ways in sham- and BLA-lesioned animals (i.e., negatively in sham- and positively in BLA-lesioned animals). Both BLA lesions and low anxiety were critical factors to enable a negative relationship between cell proliferation and depression-like behavior. Therefore, our study highlights a role for the amygdala on fluoxetine-stimulated cell survival and on the establishment of a link between cell proliferation and depression-like behavior. It also reveals an important modulatory role for anxiety on cell proliferation involving both BLA-dependent and –independent mechanisms. Our findings underscore the amygdala as a potential target to modulate antidepressants' action in hippocampal neurogenesis and in their link to depression-like behaviors

    Hippocampal Neurogenesis and Dendritic Plasticity Support Running-Improved Spatial Learning and Depression-Like Behaviour in Stressed Rats

    Get PDF
    Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg) of corticosterone (CORT) for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog) /doublecortin (immature neuronal marker) showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract stress

    Hypericum perforatum treatment: effect on behaviour and neurogenesis in a chronic stress model in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extracts of <it>Hypericum perforatum </it>(St. John's wort) have been traditionally recommended for a wide range of medical conditions, in particular mild-to-moderate depression. The present study was designed to investigate the effect of Hypericum perforatum treatment in a mouse model of anxiety/depressive-like behavior, induced by chronic corticosterone administration.</p> <p>Methods</p> <p>CD1 mice were submitted to 7 weeks corticosterone administration and then behavioral tests as Open Field (OF), Novelty-Suppressed Feeding (NSF), Forced Swim Test (FST) were performed. Cell proliferation in hippocampal dentate gyrus (DG) was investigated by both 5-bromo-2'-deoxyuridine (BrdU) and doublecortin (DCX) immunohistochemistry techniques and stereological procedure was used to quantify labeled cells. Golgi-impregnation method was used to evaluate changes in dendritic spines in DG. Hypericum perforatum (30 mg/Kg) has been administered for 3 weeks and then neural development in the adult hippocampus and behavioral changes have been examined.</p> <p>Results</p> <p>The anxiety/depressive-like state due to chronic corticosterone treatment was reversed by exogenous administration of Hypericum perforatum; the proliferation of progenitor cells in mice hippocampus was significantly reduced under chronic corticosterone treatment, whereas a long term treatment with Hypericum perforatum prevented the corticosterone-induced decrease in hippocampal cell proliferation. Corticosterone-treated mice exhibited a reduced spine density that was ameliorated by Hypericum perforatum administration.</p> <p>Conclusion</p> <p>These results provide evidence of morphological adaptations occurring in mature hippocampal neurons that might underlie resilient responses to chronic stress and contribute to the therapeutic effects of chronic Hypericum perforatum treatment.</p

    Caveats of chronic exogenous corticosterone treatments in adolescent rats and effects on anxiety-like and depressive behavior and hypothalamic-pituitary-adrenal (HPA) axis function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Administration of exogenous corticosterone is an effective preclinical model of depression, but its use has involved primarily adult rodents. Using two different procedures of administration drawn from the literature, we explored the possibility of exogenous corticosterone models in adolescence, a time of heightened risk for mood disorders in humans.</p> <p>Methods</p> <p>In experiment 1, rats were injected with 40 mg/kg corticosterone or vehicle from postnatal days 30 to 45 and compared with no injection controls on behavior in the elevated plus maze (EPM) and the forced swim test (FST). Experiment 2 consisted of three treatments administered to rats from postnatal days 30 to 45 or as adults (days 70 to 85): either corticosterone (400 μg/ml) administered in the drinking water along with 2.5% ethanol, 2.5% ethanol or water only. In addition to testing on EPM, blood samples after the FST were obtained to measure plasma corticosterone. Analysis of variance (ANOVA) and alpha level of <it>P </it>< 0.05 were used to determine statistical significance.</p> <p>Results</p> <p>In experiment 1, corticosterone treatment of adolescent rats increased anxiety in the EPM and decreased immobility in the FST compared to no injection control rats. However, vehicle injected rats were similar to corticosterone injected rats, suggesting that adolescent rats may be highly vulnerable to stress of injection. In experiment 2, the intake of treated water, and thus doses delivered, differed for adolescents and adults, but there were no effects of treatment on behavior in the EPM or FST. Rats that had ingested corticosterone had reduced corticosterone release after the FST. Ethanol vehicle also affected corticosterone release compared to those ingesting water only, but differently for adolescents than for adults.</p> <p>Conclusions</p> <p>The results indicate that several challenges must be overcome before the exogenous corticosterone model can be used effectively in adolescents.</p

    The personal and contextual contributors to school belongingness among primary school students

    Get PDF
    School belongingness has gained currency among educators and school health professionals as an important determinant of adolescent health. The current cross-sectional study presents the 15 most significant personal and contextual factors that collectively explain 66.4% (two-thirds) of the variability in 12-year old students' perceptions of belongingness in primary school. The study is part of a larger longitudinal study investigating the factors associated with student adjustment in the transition from primary to secondary school. The study found that girls and students with disabilities had higher school belongingness scores than boys, and their typically developing counterparts respectively; and explained 2.5% of the variability in school belongingness. The majority (47.1% out of 66.4%) of the variability in school belongingness was explained by student personal factors, such as social acceptance, physical appearance competence, coping skills, and social affiliation motivation; followed by parental expectations (3% out of 66.4%), and school-based factors (13.9% out of 66.4%) such as, classroom involvement, task-goal structure, autonomy provision, cultural pluralism, and absence of bullying. Each of the identified contributors of primary school belongingness can be shaped through interventions, system changes, or policy reforms
    corecore