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Abstract
Collective search for people and information has tremendously benefited from
emerging communication technologies that leverage the wisdom of the crowds, and
has been increasingly influential in solving time-critical tasks such as the DARPA
Network Challenge (DNC, also known as the Red Balloon Challenge). However, while
collective search often invests significant resources in encouraging the crowd to
contribute new information, the effort invested in verifying this information is
comparable, yet often neglected in crowdsourcing models. This paper studies how
the exploration-verification trade-off displayed by the teams modulated their success
in the DNC, as teams had limited human resources that they had to divide between
recruitment (exploration) and verification (exploitation). Our analysis suggests that
team performance in the DNC can be modelled as a modified multi-armed bandit
(MAB) problem, where information arrives to the team originating from sources of
different levels of veracity that need to be assessed in real time. We use these insights
to build a data-driven agent-based model, based on the DNC’s data, to simulate team
performance. The simulation results match the observed teams’ behavior and
demonstrate how to achieve the best balance between exploration and exploitation
for general time-critical collective search tasks.

Keywords: crowdsourcing; exploration; exploitation; misinformation; disinformation;
social search; bandit problem

1 Introduction
Crowdsourcing, the use of the Internet to solicit contributions from large groups of peo-
ple, has been shown to be very effective in time-critical tasks, ranging from manhunts
[–], to influenza detection [], to crisis-mapping [, , ]. However, time-critical crowd-
sourcing tasks often reward the collection of new information, but ignore the efforts of
verification. Crowds tend to explore new information but seldom verify it autonomously,
and exploration effort often dominates. This causes information overload, where misin-
formation (caused by error) and disinformation (caused by deliberate malice) conceal true
information [], posing a significant challenge to crowdsourcing. In the context of disaster
response, while online social media is a highly-effective crowdsourcing tool, it also makes
it nearly costless to spread false information []. Misinformation has impeded search and
rescue operations [], and sometimes it can go as far as harming innocent people. For ex-
ample, during the manhunt for the Boston Marathon bombers, the crowd wrongly iden-
tified one missing student, Sunil Tripathi, as a suspect. It subsequently emerged that he
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had died days before the bombings, yet misinformation was spread in , tweets [].
Scholars have identified this problem and paid attention to the detection of false informa-
tion. Gupta et al. [] and Boididou et al. [] building up on Canini et al. []’s work, use
contents and corresponding authors’ profiles to classify false information, and achieve rel-
atively high accuracy. However, in reality, information arrives from various channels, e.g.
phone calls, text messages or online social media. Therefore, there is no universal method
of processing the information and even classifying it in a short period of time. This paper
does not attempt to build a classifier or a universal strategy for discriminating misinforma-
tion or disinformation from correct entries. Rather, we assume that, based on the discus-
sion above, the success of a time-critical task requires not just exploring new information
(exploration) but also verification (exploitation). Given that an individual or organization
has limited resources, exploration and exploitation are regarded as two competing pro-
cesses []. Therefore, this paper explores how to balance exploration and exploitation in
time-critical crowdsourcing tasks.

We use DARPA Network Challenge (DNC) as the study case. In , DARPA launched
a competition, which aims to evaluate the power of social networks and media in mobi-
lizing crowds. Ten red weather balloons were placed at undisclosed locations throughout
the United States. Participating teams or personnel competed to be the first one to locate
all the red balloons and win a prize of $, []. This paper revisits the full submis-
sion history of individual teams, and statistically analyses why high-ranking teams topped
the challenge. We found that a large number of false locations were submitted across the
teams. Moreover, some of the false locations were submitted concurrently by more than
one team, which implies that some teams were using similar sources of information or,
as stated by Smith [], attacks were organized during the competition. As the veracity of
sources strongly influences the quality of information [], to succeed in the DNC, a team
must strike a balance between exploring new sources and exploiting the most reliable ones.
We assume that the DNC can be modelled as a Multi-Armed Bandit (MAB) problem [,
], which implies that solutions for other MAB problems could also be effective. Em-
ploying empirical studies of MAB problems, we develop agent-based simulation models
to study performance of alternative strategies and to assess the optimal one.

2 Statistics
There were a total of  registered teams in the competition. In addition, there was a
large amount of anonymous submissions. We assign all anonymous submissions to a vir-
tual team called Anonymous (the complete submission history can be found in [] and a
video illustrating submissions over time is shown in Additional file ). A submission may
contain up to ten locations, and each location comprises a pair of longitude and latitude for
a purported balloon. Every team could submit multiple entries while waiting for the previ-
ous ones to be validated by DARPA. For each submission DARPA returned the number of
correct locations that submission contained. However, the mechanism used by DARPA to
screen submissions is not known, neither is the time needed to validate each submission.

When entries were identical in terms of the longitude and latitude, they were treated
as copies of the same location. Therefore, we use one mile as the maximum uncertainty
in each dimension and locations that overlap within this margin of error are grouped and
called a cluster. In addition to the  correct clusters (corresponding to  correct loca-
tions), we found a staggering set of  false clusters (constructed by  false locations).
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Figure 1 Geographical distributions of correct and false clusters (including anonymous submissions).
We use inverse distance weighting (IDW) method [18] to interpolate the distributions. The Z-values of the
interpolations is the total number of teams submitting the false cluster. The color of the map represents
spatial density of the Z-values. The locations of correct clusters are marked as green stars with size varying
according to the total number of teams successfully locating them. There is no location submitted in Hawaii
and Alaska, so above map do not cover those two areas.

Even after removing anonymous submissions, we still observe  correct clusters ( cor-
rect locations) and  false clusters ( false locations). Surprisingly, there are  clusters
(including anonymous submission) located outside the United States, which indicates the
lack of even basic verification capability for some teams. The winning submission is the
one containing all ten correct locations, submitted by the MIT team at  minutes after
the challenge was launched. Figure  demonstrates locations of correct and false clusters
within the continental US, along with the number of teams that submitted them (presented
in the interpolated form with warmer color corresponding to the higher number of sub-
mitting teams). Given that the areas surrounding official balloons are mainly in light color
(blue) in the map, we can assert that correct locations were accurately reported. Moreover,
there existed highly confusing false clusters (surrounded with warmer colors) during the
challenge.

According to the first panel of Figure , false locations and correct locations devel-
oped synchronously in the early stage (from  to  minutes) of the competition, but
diverged eventually. We denote a set X = (, . . . , x), x =  of participating teams includ-
ing the Anonymous team. Moreover, the number of correct locations found is a vector
C = (c, . . . , cx), and false locations as F = (f, . . . , fx). The ability of verification is denoted
as V = (v, . . . , vx), and v = c/(c + f ). Verification ability varies across teams (the correla-
tion between C and F is r = ., p = ., and this value drops to only ., p = .
when excluding anonymous submissions). Moreover, we denote teams’ rankings as a vec-
tor H = (h, . . . , hx), and it does not correlate with the verification ability either (the cor-
relation between H and V is r = –., p = ., and r = –., p = . when excluding
anonymous submissions), which implies that the verification ability alone does not deter-
mine the performance.
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Figure 2 Distribution of submitted locations. The first panel shows the locations submitted over time, and
the bin width is 5 minutes. The dotted vertical line at 532 minutes denotes the winning submission. The black
solid line indicates the growth of false clusters over time, while the black dashed line indicates the growth of
false locations. The blue solid line indicates the growth of official clusters over time, while the blue dashed line
indicates the growth of correct locations. All correct clusters were found at 362 minutes after the challenge
was launched. The second panel shows the submissions for all 42 registered teams plus one Anonymous
team, sorted by the number of false clusters.

During the challenge, multiple teams made submissions that are part of the same clus-
ter, which is called a suspicious cluster. This implies that some teams might use similar
sources of information. Figure  illustrates the network between teams and false clusters.
There are a total of  suspicious clusters. These false clusters might come from malicious
attacks to prevent competing teams from discriminating correct locations from false ones.
The lasting time (indicated by color of vertex in Figure ) of a cluster, which is the time
difference between its first and last submission during the challenge, gives an indication of
the duration in which the suspicious cluster affected the DNC. As in Figure , those long-
standing clusters also developed higher betweenness centrality, which means they were
so deceptive that most teams were affected by them. In Section A of Additional file ,
a network graph showing the relationships between teams is also listed. In that graph, two
teams are linked together if both submitted at least one identical cluster. The high-ranking
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Figure 3 Network graph of false clusters. The nodes represent false clusters, and two nodes are connected
if the same team submitted them. The color of each node indicates the lasting time, which is the time
difference between its first and last submission. The size of the node indicates the betweenness centrality of
that cluster within the graph.

Table 1 Variables of clusters

Variable Description

asubmission Submission count: how many submissions the cluster had
aballoon Balloon count: how many reported locations the cluster had
ateam Team count: how many teams submitted locations belonging to the cluster
aappear Appearance time: the earliest appearance time of the cluster
adisappear Disappear time: the latest appearance time of the cluster
alasting Lasting time: adisappear - aappear
ahalf-submission Half-life submissions: time elapsed to reach half of all submissions for the cluster. It’s the different

to the appearance time aappear: if the cluster only has 1 submission, the value is 0
ahalf-balloon Half-life balloons: time elapsed to reach half balloons
ahalf-team Half-life teams: time it took for the cluster to be detected by half of the teams that report it over

the course of the challenge

teams developed higher betweenness centrality, which means they eventually explored the
sources used by most of the other teams, and that makes them more vulnerable to attacks.

To analyze how much those potentially malicious false clusters affect the competition
and how teams react to malicious attacks, we characterize each cluster (including the cor-
rect ones) using a group of variables a = (asubmission, aballoon, ateam, aappear, adisappear, alasting,
ahalf-submission, ahalf-balloon, ahalf-team). A vector A = (a, . . . , ai), i =  denotes the features of
 clusters found during the whole competition. These variables are listed in Table . The
IDW analyses using these variables are listed in the Section B of Additional file .

Figure  denotes the distributions of correct and false clusters from all registered
teams over  variables respectively. The false clusters have smaller asubmission, aballoon, ateam,
ahalf-submission, ahalf-balloon, and ahalf-team. Moreover, correct clusters appeared earlier and dis-
appeared later than false clusters, with longer lasting time than false clusters (observed
from the last row of graphs). This phenomenon may be explained by a number of obser-
vations made by DARPA []:
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Figure 4 Distributions of correct and false clusters from all registered teams (excluding anonymous)
over 9 variables (see Table 1). The red line indicates cumulative distribution function (CDF) of false clusters,
while green line indicates CDF of correct clusters. The histograms at the bottom of each panel show
distributions of correct and false clusters.

. Most teams managed to discriminate correct information and false information.
. Teams changed their strategies over time to acquire more information from more

sources, which increases the chances of receiving false information.
. Malicious attacks were not organized until the white-hot stage, and most of them

did not last a long time.
. There are a few confusing false clusters that have similar characteristics as correct

clusters.
Due to a deficiency in the submission data (a total of  submissions according to []),

analyzing the submission behavior of each team was not practical, because some teams
only submitted once during the whole competition. Consequently, we use sliding win-
dows (each contains  teams) on  registered teams, which are sorted by their rankings.
We used multivariate logistic regression analysis to find the best model for classifying cor-
rect and false clusters for each window. We found that the combination of ateam, ahalf-balloon,
and ahalf-submission is the best fit model overall (best coefficient of determination R, up to
.). This R score of each window can be regarded as the verification ability of the cor-
responding  teams. According to Figure , better teams did not necessarily have better
verification abilities (first panel, the correlation between rankings of window and R is
r = –., p = .). In terms of the locations amount, better teams generally submit-
ted more than worse teams (second panel, r = –., p < .), except some low rank-
ing teams that submitted a lot. However, the multiplication of locations amount and the
verification ability (R) significantly correlate with the rankings (third panel, r = –.,
p < .).

We use Principal Component Analysis (PCA) [] to extract the main factors for those
 variables. The first two factors account for .% of the variance (.% for the first
factor and .% for the second factor) (Figure ). The first factor can be regarded as the
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Figure 5 Multivariate logistic regression analysis (ateam, ahalf-balloon, and ahalf-submission; multiply by
locations amount; windows sorted by rankings). The lower the window number, the better the rankings
of the teams of the window. The first panel shows the distribution of the R2 scores over 33 sliding windows.
The second panel shows the distribution of the locations amount over 33 sliding windows. The third panel
shows the distribution of the multiplication of R2 scores and corresponding locations amount over 33 sliding
windows.

overall verification ability [] (first panel of Figure , the correlation between rankings
of window and R is r = –., p < .). Similar to Figure , multivariate regression
analysis on three main factors demonstrates that multiplication of locations amount and
verification ability (R score) significantly correlate with the rankings (bottom panel of
Figure , r = –., p < .).

3 Simulation
3.1 Multi-armed bandit (MAB) problem
According to DARPA [], teams expanded their sources of information as the challenge
progressed, e.g. purchased information from other teams or obtained from Twitter’s posts.
Retrieving information from new sources can be seen as a form of exploration, while ver-
ifying the existing information sources is exploitation. We assume that exploration and
exploitation are two competing processes [], due to limited resource (mainly time) each
team has. This implies that at in each trial, teams need to make a choice between submit-
ting the information from what they consider the most reliable sources (exploitation) and
submitting from another source (exploration), so this kind of social search problem could
be modelled as a MAB problem.
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Figure 6 Principal components analysis. The panel on the top left corner shows the biplot of the analysis.
The panel on the lower left corner shows the distributions of variances of principle components. The right
panel shows the multivariate regression analysis using the first three main components of PCA.

The conventional MAB problem is a problem in which one gambler facing multiple slot
machines, each of which has an unknown probability distribution of rewards, needs to
decide (a) which machines to play, (b) the order of play, and (c) the number of times to
play each machine, to maximize rewards [, ]. The player should spend a portion of the
limited budget to explore every machine (or some of them) to estimate the distribution of
rewards, and then use the remaining budget to exploit the ones with highest expectations.

An adaptive allocation rule to attain the asymptotic lower bound for the regret when the
reward distributions are the one-parameter exponential family was proposed by Lai and
Robbins in []. Based on their work, Agrawal and Hedge [] expanded the problem and
introduced switching cost to the MAB problem attaining the asymptotic lower bound for
the regret as well. Switching cost occurs along with the exploration of different machines.
It discourages frequent switching, which also applies to a number of practical problems,
e.g. oil exploration [], research and development [], and website morphing [, ].
Other variations of MAB problem have been studied, with various objectives. Hauser et al.
[] explored when the best website morphing time is (switching to another website layout
style) to increase consumer’s purchase probability. In online shortest path problems, the
objectives are to minimize delays occurring in network links which are unknown at first
but become more predictable over time [, ].

In a social search problem discussed in this paper, the objective is to minimize the time
required to find all key information (all correct locations in this study). We propose a
general MAB model to solve time-critical social search tasks: Given k people and a set of
opinions M, where each person j espouses sj ∈ M opinions, a player, who has access to each
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of the k opinionated people and has heard opinions W . Consider the following process:
a player sequentially selects a person, j, and verifies an opinion in sj ∈ W . If the information
is true, the player receives payoff , and otherwise receives nothing. The objective is to
minimize W when payoff meets a certain threshold.

In the DNC, this general form of MAB model is extended to have the following proper-
ties:

. The sources are regarded arms. In DNC, trading with other teams is regarded as
one kind of sources.

. The reliability of a source can be estimated by submitting certain pieces of the
information provided by the source. In DNC, some teams submitted a single
location to validate it through DARPA. It could be an effective submission strategy,
if not an optimal one, because submitting more than one could be confusing if the
score from the feedback is less than the numbers of locations in the submission.

. The switching cost tswitch × d occurs when a team explores d sources and each time
it takes tswitch to get access to a new source, e.g. negotiation time with other teams
when trading locations. We assume that the switching cost is one-off in DNC,
which means switching to the explored sources would not generate additional cost.

. Each submission is a trial. The cost tsubmission × n occurs when a team submits n
times and each time it takes tsubmission to wait for the feedback.

. A team receives payoff , only if the submission is correct and unobserved before.
. The objective is to minimize the total search cost tsearch = tsubmission × n + tswitch × d

when finding all key information, that is payoff = . Moreover, key information
could be repeated in different sources.

We consider the following set of strategies, which were previously studied in relation to
MAB: ε-greedy and its variants, interval estimation (referred as IntEstim in the following),
SoftMax, and POKER [, ]. As the winning criteria of the DNC is discovering all cor-
rect locations, so in an ideal case, where team can submit all  correct locations within
only  trials, the number of trials is . However, in reality, the number of submissions
is higher than the number of sources, due to the dominating number of false locations
over correct ones (Figure ). In such case, MAB’s heuristic algorithms ε-greedy and in-
terval estimation strategy are applied as both are proven to be promising strategies [,
]. However, we don’t consider SoftMax strategy [] and the POKER strategy [] and
their variants, as the former underperforms other strategies and the latter does not suit
in this case where there are more trials than arms []. Overall, we test  strategies: basic
ε-greedy, ε-first, ε-decreasing, and IntEstim.

The ε-greedy strategy and its variants have common greedy behaviors where the best
arm (the one of highest rewards expectation based on acquired knowledge) is always
pulled except when a (uniformly) random action is taken []. The basic ε-greedy strategy
defines a fixed value of ε, which is the probability that a random arm is selected in the next
trial. The ε-first strategy tends to explore in the first ε N trials, and exploit the best arms in
the remaining ( – ε) N trials. As the estimation for the rewards distribution of each arm
becomes more accurate over time, a fixed ε would possibly make the exploration at later
stage inefficient. As an improvement, a more adaptive greedy strategy called ε-decreasing
strategy was proposed, where the value of ε decreases as the experiment progresses, re-
sulting in highly explorative behavior at the beginning, but highly exploitative behavior at
the end []. Different to fixing ε in the former two cases, ε-decreasing strategy requires
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a user to fine-tune the parameter c, which controls the decreasing rate of ε, to achieve
approximate optimal solution. According to the Theorem  of [], let � be the difference
between the expectation μ∗ of the best arm and the expectation μ of the second best arm.
The decreasing ε is defined as ε

def= min{, ck
n� }, where k is the number of arms, and n is the

number of trials. The larger the value of c, the slower the ε decreases, the more exploration
is performed.

In an IntEstim strategy, each arm is assigned an “optimistic reward estimate” within a
certain confidence interval, e.g., %, and the arm with highest estimate is pulled [].
The upper bound of the reward estimation of an arm on step n is computed based on
Algorithm  in []. The confidence level is denoted as z, and the upper bound is defined
as follow:

ub(μ̂,ν) =
(

μ̂

ν
+

z/
ν

+
z/√

ν

√(
μ̂

ν

)(
 –

μ̂

ν

)
+

z/
ν

)/
 +

z/
ν

,

where μ̂ and ν are the observed rewards and the number of times that arm has been pulled
by step n. The unobserved or infrequently observed arms tend to have overestimated re-
ward mean, which will lead to further exploration of those arms. The more an arm is
pulled the closer the estimate to the true reward mean []. There are two reasons caus-
ing the upper bound to be large: () the arm is seldom pulled, and () the observed rewards
distribution is good. Moreover, higher confidence level z leads to more exploration [].
This experiment uses confidence levels ranging from % to .% to test the IntEstim
strategy (the corresponding z scores of different confidence levels can be found in []).

3.2 Experiment settings
In theory, the number of sources during a time-critical social search could be unlimited,
since participating teams are free to explore Twitter feeds, Facebook groups, online fo-
rums, personal contacts and any other type of sources without restrictions. New sources
could be acquired at any stage of the challenge. Teams have no a priori knowledge of the
number of sources available. However, the course of the DNC demonstrated that teams
accumulate all key information from limited number of sources, which they also trade
with each other. To reflect this, and to simplify the experiment, we assume that all infor-
mation M (correct and false) is provided by a fixed number k = (, , . . . , ) of sources
that are equally accessible by any team.

Teams have no initial knowledge about the reliability of sources and this knowledge will
be gained through submitting the information from them. A set M = (, . . . , m), m = 
of unique locations was submitted during the whole competition, so each source contains
up to sj = m

k pieces of information. To simplify the experiment, we assume all sources have
equal amount of information. Ten correct clusters sorted by aappear contain , , , ,
, , , , ,  locations respectively. Therefore, the set of locations M = (Lc, Lf ), where
Lc = (l

, . . . , l
 ), (l

, l
), . . . , (

l) is the collection of correct locations, and Lf = (l, . . . , l)
is the set of the false ones. We assume that one-off switching cost tswitch occurs when a
team explores a new source. Due to the lack of information about switching cost in DNC,
to simplify the experiment, we assume that switching time is the same for each new source
and during each simulation run tswitch is randomly set to be equal to , , , , , or 
minutes. The modified MAB problem is tested in three configurations:
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Figure 7 Comparisons between different MAB problem strategies. The blue area indicates the switching
cost on average, and the red area indicates the submission cost on average. The overall search time is the sum
of those two areas.

I. Locations in M (regardless whether correct or false) are uniformly distributed
between k sources;

II. Locations in M (regardless whether correct or false) are normally distributed
between k sources, and

III. Correct clusters are set to contain the same number of locations ( locations of
each), so that Lc = (l

, . . . , l
 ), . . . , (l

, . . . , l
), and correct locations are normally

distributed in k sources.
The setting III is to test the performance of all strategies when all correct information has
equivalent appearances.

Since the actual competition lasted  minutes, we set the average interval between
two submissions as tsubmission = 

m ≈  minutes. A team completes the challenge when all
 correct locations are successfully submitted, therefore the total search time

tsearch = tsubmission × n + tswitch × d,

where n is the number of trials, d is number of explored sources, and tsearch is the score of
the team. Each strategy is run , times to report the average value of tsearch.

3.3 Results
In a randomized dataset (setting I), all sources tend to have similar reliability. Therefore,
exploration oriented strategy or exploitation oriented strategy would not be significantly
different. The experimental results confirm this assumption, with no strategy standing out
from the others, and the tsearch converges at approximately  minutes (k = , tswitch =
).

In a normally distributed dataset (setting II), all strategies can achieve the best tsearch ≈
 minutes (k = , tswitch = ), when parameters are properly set (Figure ). It should
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be noted that tsearch could be as low as  minutes when a team explores the most re-
liable sources during the exploration phase. The ε-greedy strategy and its variants could
underperform compared to IntEstim if the value of ε is not properly set. Similar to the
findings of [], making ε decreasing does not improve the performance. The results of
the ε-greedy strategy and its variants imply that the highly exploitative behavior could
possibly lead to lower switching cost and overall better performance, which means teams
should focus on the most reliable sources ever found if they adopt ε-greedy strategies.
However, IntEstim performs well no matter how user defines the confidence level, even
though the switching cost is relatively higher than the best settings of ε-greedy strategies.
Therefore, IntEstim strategy should be adopted in this kind of competition, where some
key information appears rarely across sources. We also made submission interval to fol-
low Weibull distribution (λ = , κ ∈ (, ), E(X) = ), and the result hold as well. As some
correct clusters only contain relatively small number of locations, a team must switch be-
tween many sources to collect them if missing in the early stage during the exploration.
Therefore, in setting II, the difference of switching cost between the best strategy and the
worst one is marginal.

However, in setting III of the simulation, where all correct clusters have equal number
of locations, the switching cost dominates the variances of the total search time (see Sec-
tion C of Additional file ). A team would probably collect all ten correct locations from a
small number of sources. Therefore, the highly exploitative ε-greedy strategy and its vari-
ants outperform the IntEstim strategy by switching less. Given that the highly exploita-
tive ε-greedy strategy and its variants achieve overall promising performance in setting II
and III, they should also be adopted in a more general social search problem with unknown
rewards distribution.

In conclusion, the results suggest that there would be no universal optimal strategy for
time-critical social search tasks of different rewards distributions. Even though the IntEs-
tim strategy outperforms others in the case of DNC, it could generate higher switching
cost than the others on average. While in the cases where switching cost is higher than
verification cost, the IntEstim strategy could result in an undesired solution. On the other
hand, highly exploitative greedy behaviors could guarantee minimum number of switches,
while performance is only marginally downgraded. Therefore, in general time-critical so-
cial search tasks where rewards distribution and switching cost is usually unknown, we
suggest adopting highly exploitative ε-greedy strategy and its variants.

4 Discussions and conclusions
To the best of the authors’ knowledge, it is impossible to understand the strategies of an
individual team given that only a few of them were interviewed after the competition [].
Moreover, it is not clear how much information each team collected and how reliable
this information was. Through the analysis of the submission history, we found that the
dominant teams do not necessarily submit the most or have the best verification ability.
However, it is the combination of both that leads to success in the competition. When
exploration and exploitation are regarded as two competing processes, teams need to bal-
ance between exploration of new sources and exploitation of the most reliable ones to gain
advantage. As this competition can be seen as a MAB problem, we assume that solutions of
other MAB problems could also be effective in this case. Firstly, we propose a general form
of the MAB model for handling the time-critical social search problem where multiple in-
formation sources are presenting possibly inaccurate information; secondly, we extended
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it to adapt to the context of DNC. Agent-based simulations of different strategies are per-
formed to obtain the optimal one for DNC. The result suggests that, in a situation where
some key information is rare (known only to a few sources), the IntEstim strategy outper-
forms the others on average, no matter what confidence level is defined. It also agrees with
the findings of other studies [] that ε-greedy strategy and its variants have very similar
performance, and making ε decreasing would not improve that. On the other hand, if all
key information has similar number of appearances, highly exploitative ε-greedy strategy
and its variants could be the most promising strategies. Given that general time-critical
social search problems usually have unknown reward distribution and switching cost, we
suggest adopting highly exploitative ε-greedy strategy and its variants.

The experiment is performed in only three settings: I - correct locations are randomly
distributed across sources, II - correct locations are normally distributed across sources,
and III - correct locations have equivalent appearances and they are normally distributed
across sources. However, in reality, the distribution of misinformation is unknown before-
hand. Therefore, highly exploitative ε-greedy strategy and its variants might not work in
other cases. It implies that more works need to be done in analysis of the distribution of
misinformation in other time-critical crowdsourcing tasks.

Switching cost is unavoidable in practical problems. However, in time-critical social
search tasks, little has been done in research about the cost of exploring new sources,
or the relationships between switching cost and verification cost. Further analysis about
them should be performed.

Even though the result of this study cannot be directly applied in other time-critical
crowdsourcing tasks, it provides insights into how to strike a balance between exploration
and exploitation. For example, during the crowdsourced manhunt event for the Boston
Marathon bombers, the authorities should have observed that misinformation dominated
useful information from the very beginning [], and the self-correcting crowd hardly de-
terred it. Therefore, attentions should be paid to the discussion threads or Twitter feeds
that continually deliver useful information that advanced the search.

Additional material

Additional file 1: Video of submissions over time. The official balloons are shown in green icons, and the false
locations are shown in red icons. (mov)
Additional file 2: Supporting materials for Bandit Strategies in Social Search: the case of the DARPA Red
Balloon Challenge. (pdf )
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