214 research outputs found

    Integrated method for quantitative morphometry and oxygen transport modelling in striated muscle

    Get PDF
    Identifying structural limitations in O2 transport is primarily restricted by current methods employed to characterise the nature of physiological remodelling. Inadequate resolution or breadth of available data has impaired development of routine diagnostic protocols and effective therapeutic strategies. Understanding O2 transport within striated muscle faces major challenges, most notably in quantifying how well individual fibres are supplied by the microcirculation, which has necessitated exploring tissue O2 supply using theoretical modelling of diffusive exchange. Having identified capillary domains as a suitable model for the description of local O2 supply, and requiring less computation than numerically calculating the trapping regions that are supplied by each capillary via biophysical transport models, we sought to design a high throughput method for histological analysis. We present an integrated package that identifies optimal protocols for identification of important input elements, processing of digitised images with semi-automated routines, and incorporation of these data into a mathematical modelling framework with computed output visualised as the tissue partial pressure of O2 (PO2) distribution across a biopsy sample. Worked examples are provided using muscle samples from experiments involving rats and humans

    An 800-million-solar-mass black hole in a significantly neutral Universe at redshift 7.5

    Get PDF
    Quasars are the most luminous non-transient objects known and as a result they enable studies of the Universe at the earliest cosmic epochs. Despite extensive efforts, however, the quasar ULAS J1120+0641 at z=7.09 has remained the only one known at z>7 for more than half a decade. Here we report observations of the quasar ULAS J134208.10+092838.61 (hereafter J1342+0928) at redshift z=7.54. This quasar has a bolometric luminosity of 4e13 times the luminosity of the Sun and a black hole mass of 8e8 solar masses. The existence of this supermassive black hole when the Universe was only 690 million years old---just five percent of its current age---reinforces models of early black-hole growth that allow black holes with initial masses of more than about 1e4 solar masses or episodic hyper-Eddington accretion. We see strong evidence of absorption of the spectrum of the quasar redwards of the Lyman alpha emission line (the Gunn-Peterson damping wing), as would be expected if a significant amount (more than 10 per cent) of the hydrogen in the intergalactic medium surrounding J1342+0928 is neutral. We derive a significant fraction of neutral hydrogen, although the exact fraction depends on the modelling. However, even in our most conservative analysis we find a fraction of more than 0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are probing well within the reionization epoch of the Universe.Comment: Updated to match the final journal versio

    Characterisation of human kallikrein 6/protease M expression in ovarian cancer

    Get PDF
    Kallikrein 6 (hK6, also known as protease M/zyme/neurosin) is a member of the human kallikrein gene family. We have previously cloned the cDNA for this gene by differential display and shown the overexpression of the mRNA in breast and ovarian primary tumour tissues and cell lines. To thoroughly characterise the expression of this kallikrein in ovarian cancer, we have developed a novel monoclonal antibody specific to hK6 and employed it in immunohistochemistry with a wide range of ovarian tumour samples. The expression was found elevated in 67 of 80 cases of ovarian tumour samples and there was a significant difference in the expression levels between normal and benign ovarian tissues and the borderline and invasive tumours (P<0.001). There was no difference of expression level between different subtypes of tumours. More significantly, high level of kallikrein 6 expression was found in many early-stage and low-grade tumours, and elevated hK6 proteins were found in benign epithelia coexisting with borderline and invasive tissues, suggesting that overexpression of hK6 is an early phenomenon in the development of ovarian cancer. Quantitative real-time reverse transcription-polymerase chain reactions also showed elevated kallikrein 6 mRNA expression in ovarian tumours. Genomic Southern analysis of 19 ovarian tumour samples suggested that gene amplification is one mechanism for the overexpression of hK6 in ovarian cancer

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    Common Genetic Variants near the Brittle Cornea Syndrome Locus ZNF469 Influence the Blinding Disease Risk Factor Central Corneal Thickness

    Get PDF
    Central corneal thickness (CCT), one of the most highly heritable human traits (h2 typically>0.9), is important for the diagnosis of glaucoma and a potential risk factor for glaucoma susceptibility. We conducted genome-wide association studies in five cohorts from Australia and the United Kingdom (total N = 5058). Three cohorts were based on individually genotyped twin collections, with the remaining two cohorts genotyped on pooled samples from singletons with extreme trait values. The pooled sample findings were validated by individual genotyping the pooled samples together with additional samples also within extreme quantiles. We describe methods for efficient combined analysis of the results from these different study designs. We have identified and replicated quantitative trait loci on chromosomes 13 and 16 for association with CCT. The locus on chromosome 13 (nearest gene FOXO1) had an overall meta-analysis p-value for all the individually genotyped samples of 4.6×10−10. The locus on chromosome 16 was associated with CCT with p = 8.95×10−11. The nearest gene to the associated chromosome 16 SNPs was ZNF469, a locus recently implicated in Brittle Cornea Syndrome (BCS), a very rare disorder characterized by abnormal thin corneas. Our findings suggest that in addition to rare variants in ZNF469 underlying CCT variation in BCS patients, more common variants near this gene may contribute to CCT variation in the general population

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    Obesity and survival in operable breast cancer patients treated with adjuvant anthracyclines and taxanes according to pathological subtypes: a pooled analysis

    Get PDF
    IntroductionObesity is an unfavorable prognostic factor in breast cancer (BC) patients regardless of menopausal status and treatment received. However, the association between obesity and survival outcome by pathological subtype requires further clarification.MethodsWe performed a retrospective analysis including 5,683 operable BC patients enrolled in four randomized clinical trials (GEICAM/9906, GEICAM/9805, GEICAM/2003–02, and BCIRG 001) evaluating anthracyclines and taxanes as adjuvant treatments. Our primary aim was to assess the prognostic effect of body mass index (BMI) on disease recurrence, breast cancer mortality (BCM), and overall mortality (OM). A secondary aim was to detect differences of such prognostic effects by subtype.ResultsMultivariate survival analyses adjusting for age, tumor size, nodal status, menopausal status, surgery type, histological grade, hormone receptor status, human epidermal growth factor receptor 2 (HER2) status, chemotherapy regimen, and under-treatment showed that obese patients (BMI 30.0 to 34.9) had similar prognoses to that of patients with a BMI < 25 (reference group) in terms of recurrence (Hazard Ratio [HR] = 1.08, 95% Confidence Interval [CI] = 0.90 to 1.30), BCM (HR = 1.02, 0.81 to 1.29), and OM (HR = 0.97, 0.78 to 1.19). Patients with severe obesity (BMI ≥ 35) had a significantly increased risk of recurrence (HR = 1.26, 1.00 to 1.59, P = 0.048), BCM (HR = 1.32, 1.00 to 1.74, P = 0.050), and OM (HR = 1.35, 1.06 to 1.71, P = 0.016) compared to our reference group. The prognostic effect of severe obesity did not vary by subtype.ConclusionsSeverely obese patients treated with anthracyclines and taxanes present a worse prognosis regarding recurrence, BCM, and OM than patients with BMI < 25. The magnitude of the harmful effect of BMI on survival-related outcomes was similar across subtypes

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF
    corecore