1,138 research outputs found
The use of complementary and alternative medicine by individuals with features of metabolic syndrome
OBJECTIVE:
To compare the use of complementary and alternative medicine (CAM), including dietary supplements, by individuals with and without features of metabolic syndrome (FeMS).
METHODS:
Using a cross sectional study design, information was obtained by self-administered questionnaires from 300 university individuals. FeMS was defined as any individuals self-reporting at least one of the clinical diagnoses of diabetes, hypertension, hyperlipidemia, or obesity. Finally, two categories were created for cross tabulation, and individuals with and without FeMS were compared.
RESULTS:
Of the 192 individuals completing the study, 39% (n=76) were currently using or had used CAM therapies in the past 12 months. Individuals with FeMS (n=54, 28%) were more likely (P<0.05) to use different types of CAM therapies, in particular dietary and herbal supplements, aromatherapy and massage therapy compared to individuals without FeMS (n=138, 72%).
CONCLUSION:
Individuals with FeMS were more likely to use CAM, particularly supplements. Doctors need to properly inquire about and understand their patients' supplement use, especially if CAM therapies are used in conjunction with conventional medications
Quick Access Rocket Exhaust Rig Testing of Coated GRCop-84 Sheets Used to Aid Coating Selection for Reusable Launch Vehicles
The design of the next generation of reusable launch vehicles calls for using GRCop-84 copper alloy liners based on a composition1 invented at the NASA Glenn Research Center: Cu-8(at.%)Cr-4%Nb. Many of the properties of this alloy have been shown to be far superior to those of other conventional copper alloys, such as NARloy-Z. Despite this considerable advantage, it is expected that GRCop-84 will suffer from some type of environmental degradation depending on the type of rocket fuel utilized. In a liquid hydrogen (LH2), liquid oxygen (LO2) booster engine, copper alloys undergo repeated cycles of oxidation of the copper matrix and subsequent reduction of the copper oxide, a process termed "blanching". Blanching results in increased surface roughness and poor heat-transfer capabilities, local hot spots, decreased engine performance, and premature failure of the liner material. This environmental degradation coupled with the effects of thermomechanical stresses, creep, and high thermal gradients can distort the cooling channel severely, ultimately leading to its failure
Introduction of a novel magnetic resonance imaging-based scoring system for assessing disease activity in children with juvenile dermatomyositis
Objectives: We aimed to develop and assess the reliability of a novel MRI-based scoring system for reporting the severity of MRI findings in children with suspected JDM. Methods: Nine consultant paediatric radiologists independently assessed and scored 40 axial and 30 coronal thigh MR images of children with suspected JDM on two occasions using the juvenile dermatomyositis magnetic resonance Imaging Score (JIS). JIS was calculated for both reads for each plane and each limb, with possible scores ranging from 0 (normal) to 100 (severe). Inter- and intraobserver agreement was calculated using the intraclass correlation coefficient (ICC) and two- and one-way random effects models, respectively. Bland-Altman plots of the difference in JIS against the average JIS were also produced for each rater. Results: Overall, the interobserver reliability and agreement was good-for axial images, JIS ranged from 46.8 to 61.0 [ICC = 0.88 (95% CI: 0.82, 0.92)] for the left limb and 47.9-61.4 [ICC = 0.87 (95% CI: 0.81, 0.92)] for the right limb. For coronal images, JIS ranged from 56.7 to 65.1 [ICC = 0.90 (95% CI: 0.85, 0.95)] for the left limb and 55.7 to 66.8 [ICC = 0.90 (95% CI: 0.84, 0.94)] for the right limb. The intraobserver reliability and agreement was good, with ICC ranging from 0.90 to 0.94. Conclusion: JIS is a semi-objective scoring system with potential to serve as a reliable biomarker of disease severity and response to therapeutic interventions in children with JDM
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Progesterone receptor modulates ERα action in breast cancer.
Progesterone receptor (PR) expression is used as a biomarker of oestrogen receptor-α (ERα) function and breast cancer prognosis. Here we show that PR is not merely an ERα-induced gene target, but is also an ERα-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERα to direct ERα chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited oestrogen-mediated growth of ERα(+) cell line xenografts and primary ERα(+) breast tumour explants, and had increased anti-proliferative effects when coupled with an ERα antagonist. Copy number loss of PGR, the gene coding for PR, is a common feature in ERα(+) breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERα chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions.We would like to acknowledge the support of the University of Cambridge, Cancer Research UK and Hutchison Whampoa Limited. Research reported in this manuscript was supported by the National Cancer Institute of the National Institutes of Health under award number 5P30CA142543 (to UT Southwestern) and Department of Defense grants W81XWH-12-1-0288-03 (GVR). W.D.T. is supported by grants from the National Health and Medical Research Council of Australia (ID 1008349; ID 1084416) and Cancer Australia (ID 627229) T.E.H held a Fellowship Award from the US Department of Defense Breast Cancer Research Program (BCRP; #W81XWH-11-1-0592) and currently is supported by a Florey Fellowship from the Royal Adelaide Hospital Research Foundation. J.S.C is supported by an ERC starting grant and an EMBO Young investigator award.This is the accepted manuscript. The final version is available at www.nature.com/nature/journal/v523/n7560/full/nature14583.htm
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Normative data on regional sweat-sodium concentrations of professional male team-sport athletes
Background:
The purpose of this paper was to report normative data on regional sweat sweat-sodium concentrations of various professional male team-sport athletes, and to compare sweat-sodium concentrations among sports. Data to this effect would inform our understanding of athlete sodium requirements, thus allowing for the individualisation of sodium replacement strategies. Accordingly, data from 696 athletes (Soccer, n = 270; Rugby, n = 181; Baseball, n = 133; American Football, n = 60; Basketball, n = 52) were compiled for a retrospective analysis. Regional sweat-sodium concentrations were collected using the pilocarpine iontophoresis method, and compared to self-reported measures collected via questionnaire.
Results:
Sweat-sodium concentrations were significantly higher (p < 0.05) in American football (50.4 ± 15.3 mmol·L-1), baseball (54.0 ± 14.0 mmol·L-1), and basketball (48.3 ± 14.0 mmol·L-1) than either soccer (43.2 ± 12.0 mmol·L-1) or rugby (44.0 ± 12.1 mmol·L-1), but with no differences among the N.American or British sports. There were strong positive correlations between sweat-sodium concentrations and self-reported sodium losses in American football (rs = 0.962, p < 0.001), basketball (rs = 0.953, p < 0.001), rugby (rs = 0.813, p < 0.001), and soccer (rs = 0.748, p < 0.001).
Conclusions:
The normative data provided on sweat-sodium concentrations might assist sports science/medicine practitioners in generating bespoke hydration and electrolyte-replacement strategies to meet the sodium demands of professional team-sport athletes. Moreover, these novel data suggest that self-reported measures of sodium loss might serve as an effective surrogate in the absence of direct measures; i.e., those which are more expensive or non-readily available
Kernel Architecture of the Genetic Circuitry of the Arabidopsis Circadian System
A wide range of organisms features molecular machines, circadian clocks,
which generate endogenous oscillations with ~24 h periodicity and thereby
synchronize biological processes to diurnal environmental fluctuations.
Recently, it has become clear that plants harbor more complex gene regulatory
circuits within the core circadian clocks than other organisms, inspiring a
fundamental question: are all these regulatory interactions between clock genes
equally crucial for the establishment and maintenance of circadian rhythms? Our
mechanistic simulation for Arabidopsis thaliana demonstrates that at least half
of the total regulatory interactions must be present to express the circadian
molecular profiles observed in wild-type plants. A set of those essential
interactions is called herein a kernel of the circadian system. The kernel
structure unbiasedly reveals four interlocked negative feedback loops
contributing to circadian rhythms, and three feedback loops among them drive
the autonomous oscillation itself. Strikingly, the kernel structure, as well as
the whole clock circuitry, is overwhelmingly composed of inhibitory, rather
than activating, interactions between genes. We found that this tendency
underlies plant circadian molecular profiles which often exhibit
sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate
profiles, inhibitory interactions may facilitate the global coordination of
temporally-distant clock events that are markedly peaked at very specific times
of day. Our systematic approach resulting in experimentally-testable
predictions provides insights into a design principle of biological clockwork,
with implications for synthetic biology.Comment: Supplementary material is available at the journal websit
Origin of reduced magnetization and domain formation in small magnetite nanoparticles
The structural, chemical, and magnetic properties of magnetite nanoparticles are compared. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. Atomistic magnetic modelling of nanoparticles with and without these defects reveals the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm
Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation
O-GlcNAcylation is a newly discovered histone modification implicated in transcriptional regulation, but no structural information on the physical effect of GlcNAcylation on chromatin exists. Here, we generate synthetic, pure GlcNAcylated histones and nucleosomes and reveal that GlcNAcylation can modulate structure through direct destabilization of H2A/H2B dimers in the nucleosome, thus promoting an 'open' chromatin state. The results suggest that a plausible molecular basis for one role of histone O-GlcNAcylation in epigenetic regulation is to lower the barrier for RNA polymerase passage and hence increase transcription
- …
