45 research outputs found

    Formation of Galaxy Clusters

    Full text link
    In this review, we describe our current understanding of cluster formation: from the general picture of collapse from initial density fluctuations in an expanding Universe to detailed simulations of cluster formation including the effects of galaxy formation. We outline both the areas in which highly accurate predictions of theoretical models can be obtained and areas where predictions are uncertain due to uncertain physics of galaxy formation and feedback. The former includes the description of the structural properties of the dark matter halos hosting cluster, their mass function and clustering properties. Their study provides a foundation for cosmological applications of clusters and for testing the fundamental assumptions of the standard model of structure formation. The latter includes the description of the total gas and stellar fractions, the thermodynamical and non-thermal processes in the intracluster plasma. Their study serves as a testing ground for galaxy formation models and plasma physics. In this context, we identify a suitable radial range where the observed thermal properties of the intra-cluster plasma exhibit the most regular behavior and thus can be used to define robust observational proxies for the total cluster mass. We put particular emphasis on examining assumptions and limitations of the widely used self-similar model of clusters. Finally, we discuss the formation of clusters in non-standard cosmological models, such as non-Gaussian models for the initial density field and models with modified gravity, along with prospects for testing these alternative scenarios with large cluster surveys in the near future.Comment: 66 pages, 17 figures, review to be published in 2012 Annual Reviews of Astronomy & Astrophysic

    The fraction of activated N-methyl-d-Aspartate receptors during synaptic transmission remains constant in the presence of the glutamate release inhibitor riluzole

    Get PDF
    Excessive N-methyl-d-aspartate (NMDA) receptor activation is widely accepted to mediate calcium-dependent glutamate excitotoxicity. The uncompetitive, voltage-dependent NMDA receptor antagonist memantine has been successfully used clinically in the treatment of neurodegenerative dementia and is internationally registered for the treatment of moderate to severe Alzheimer′s disease. Glutamate release inhibitors (GRIs) may also be promising for the therapy of some neurodegenerative diseases. During the clinical use of GRIs, it could be questioned whether there would still be a sufficient number of active NMDA receptors to allow any additional effects of memantine or similar NMDA receptor antagonists. To address this question, we determined the fraction of NMDA receptors contributing to postsynaptic events in the presence of therapeutically relevant concentrations of the GRI riluzole (1 μM) using an in vitro hippocampal slice preparation. We measured the charge transfer of pharmacologically isolated excitatory synaptic responses before and after the application of the selective, competitive NMDA receptor antagonist D-AP5 (100 μM). The fraction of activated NMDA receptors under control conditions did not differ from those in the presence of riluzole. It is therefore likely that NMDA receptor antagonists would be able to exert additional therapeutic effects in combination therapy with GRIs

    Dark Energy Surveyed Year 1 results: calibration of cluster mis-centring in the redMaPPer catalogues

    Get PDF
    The centre determination of a galaxy cluster from an optical cluster finding algorithm can be offset from theoretical prescriptions or N-body definitions of its host halo centre. These offsets impact the recovered cluster statistics, affecting both richness measurements and the weak lensing shear profile around the clusters. This paper models the centring performance of the redMaPPer cluster finding algorithm using archival X-ray observations of redMaPPer selected clusters. Assuming the X-ray emission peaks as the fiducial halo centres, and through analysing their offsets to the redMaPPer centres, we find that ∼75 ± 8 per cent of the redMaPPer clusters are well centred and the mis-centred offset follows a Gamma distribution in normalized, projected distance. These mis-centring offsets cause a systematic underestimation of cluster richness relative to the well-centred clusters, for which we propose a descriptive model. Our results enable the DES Y1 cluster cosmology analysis by characterizing the necessary corrections to both the weak lensing and richness abundance functions of the DES Y1 redMaPPer cluster catalogue

    Dark Energy Survey year 1 results: cosmological constraints from cluster abundances and weak lensing

    Get PDF
    We perform a joint analysis of the counts and weak lensing signal of redMaPPer clusters selected from the Dark Energy Survey (DES) Year 1 dataset. Our analysis uses the same shear and source photometric redshifts estimates as were used in the DES combined probes analysis. Our analysis results in surprisingly low values for S8=σ8(Ωm/0.3)0.5=0.65±0.04, driven by a low matter density parameter, Ωm=0.179+0.031−0.038, with σ8−Ωm posteriors in 2.4σ tension with the DES Y1 3x2pt results, and in 5.6σ with the Planck CMB analysis. These results include the impact of post-unblinding changes to the analysis, which did not improve the level of consistency with other data sets compared to the results obtained at the unblinding. The fact that multiple cosmological probes (supernovae, baryon acoustic oscillations, cosmic shear, galaxy clustering and CMB anisotropies), and other galaxy cluster analyses all favor significantly higher matter densities suggests the presence of systematic errors in the data or an incomplete modeling of the relevant physics. Cross checks with x-ray and microwave data, as well as independent constraints on the observable-mass relation from Sunyaev-Zeldovich selected clusters, suggest that the discrepancy resides in our modeling of the weak lensing signal rather than the cluster abundance. Repeating our analysis using a higher richness threshold (λ≥30) significantly reduces the tension with other probes, and points to one or more richness-dependent effects not captured by our model

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Safety out of control: dopamine and defence

    Full text link
    corecore