140 research outputs found

    Interaction of ENSO-driven Flood Variability and Anthropogenic Changes in Driving Channel Evolution: Corryong/ Nariel Creek, Australia

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Australian Geographer on 03/09/2015, available online: 10.1080/00049182.2015.1048595Understanding the relative contributions of climatic and anthropogenic drivers of channel change are important to inform river management, especially in the context of environmental change. This global debate is especially pertinent in Australia as catchments have been severely altered since recent European settlement, and there is also strong evidence of cyclical climate variability controlling environmental systems. Corryong/Nariel Creek is an ideal setting to further study the interaction between climate and anthropogenic changes on channel evolution as it has experienced both significant periods of flood and drought, controlled by the El Niño Southern Oscillation (ENSO), and extensive anthropogenic changes. Since European settlement the floodplain has been completely cleared, the riparian zone almost entirely invaded by willows, and every reach of the channel has experienced some form of direct channel modification. Through the combined analysis of channel evolution, climate changes and anthropogenic history of the river it was found that both the ENSO-driven climate and anthropogenic drivers are significant, although at different scales of channel change. Significant straightening in response to land clearing in the early twentieth century occurred before any records of direct channel modifications. Following this, most river management works were in response to instabilities created in the clearing period, or to instabilities created by flooding triggering a new phase of instability in reaches which had already undergone stabilisation works. Overall, human activities triggered channel instability via land clearing, and management works since then generally exacerbated erosion during high flows that are driven by climate fluctuations. This research raises the interesting question of whether rivers in Australia have become more responsive to the ENSO cycle since the clearing of catchment and riparian vegetation, or whether the past response to climate variability was different

    One Health contributions towards more effective and equitable approaches to health in low- and middle-income countries

    Get PDF
    This research was supported by the UK Biotechnology and Biological Sciences Research Council (BB/J010367/1) and the UK Zoonoses and Emerging Livestock Systems Initiative (BB/L017679/1, BB/L018926/1 and BB/L018845/1) (S.C., J.E.B.H., J.S., J.B., A.D., J.A.C., W.A.d.G., R.R.K., T.K., D.T.H., B.T.M., E.S.S., L.W.). The Wellcome Trust provided supported for K.H. and A.L. (095787/Z/11/Z) and K.J.A. (096400/Z/11/Z). The US National Institutes of Health provided support for J.A.C. (R01AI121378) and M.P.R. (R01AI121378, K23AI116869).Emerging zoonoses with pandemic potential are a stated priority for the global health security agenda, but endemic zoonoses also have a major societal impact in low-resource settings. Although many endemic zoonoses can be treated, timely diagnosis and appropriate clinical management of human cases is often challenging. Preventive ‘One Health’ interventions, e.g. interventions in animal populations that generate human health benefits, may provide a useful approach to overcoming some of these challenges. Effective strategies, such as animal vaccination, already exist for the prevention, control and elimination of many endemic zoonoses, including rabies, and several livestock zoonoses (e.g. brucellosis, leptospirosis, Q fever) that are important causes of human febrile illness and livestock productivity losses in low- and middle-income countries. We make the case that, for these diseases, One Health interventions have the potential to be more effective and generate more equitable benefits for human health and livelihoods, particularly in rural areas, than approaches that rely exclusively on treatment of human cases. We hypothesize that applying One Health interventions to tackle these health challenges will help to build trust, community engagement and cross-sectoral collaboration, which will in turn strengthen the capacity of fragile health systems to respond to the threat of emerging zoonoses and other future health challenges. One Health interventions thus have the potential to align the ongoing needs of disadvantaged communities with the concerns of the broader global community, providing a pragmatic and equitable approach to meeting the global goals for sustainable development and supporting the global health security agenda.Publisher PDFPeer reviewe

    Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond

    Get PDF
    The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device’s unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power ‘starvation’ reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in–out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added
    • 

    corecore