50 research outputs found

    Enhanced Ca(2+) signaling, mild primary aldosteronism, and hypertension in a familial hyperaldosteronism mouse model (Cacna1h(M1560V/+))

    Get PDF
    Gain-of-function mutations in the CACNA1H gene (encoding the T-type calcium channel Ca(V)3.2) cause autosomal-dominant familial hyperaldosteronism type IV (FH-IV) and early-onset hypertension in humans. We used CRISPR/Cas9 to generate Cacna1h(M1560V/+) knockin mice as a model of the most common FH-IV mutation, along with corresponding knockout mice (Cacna1h(-/-)). Adrenal morphology of both Cacna1h(M1560V/+) and Cacna1h(-/-) mice was normal. Cacna1h(M1560V/+) mice had elevated aldosterone:renin ratios (a screening parameter for primary aldosteronism). Their adrenal Cyp11b2 (aldosterone synthase) expression was increased and remained elevated on a high-salt diet (relative autonomy, characteristic of primary aldosteronism), but plasma aldosterone was only elevated in male animals. The systolic blood pressure of Cacna1h(M1560V/+) mice was 8 mmHg higher than in wild-type littermates and remained elevated on a high-salt diet. Cacna1h(-/-) mice had elevated renal Ren1 (renin-1) expression but normal adrenal Cyp11b2 levels, suggesting that in the absence of Ca(V)3.2, stimulation of the renin-angiotensin system activates alternative calcium entry pathways to maintain normal aldosterone production. On a cellular level, Cacna1h(M1560V/+) adrenal slices showed increased baseline and peak intracellular calcium concentrations in the zona glomerulosa compared to controls, but the frequency of calcium spikes did not rise. We conclude that FH-IV, on a molecular level, is caused by elevated intracellular Ca(2+) concentrations as a signal for aldosterone production in adrenal glomerulosa cells. We demonstrate that a germline Cacna1h gain-of-function mutation is sufficient to cause mild primary aldosteronism, whereas loss of Ca(V)3.2 channel function can be compensated for in a chronic setting

    Genetic drivers of kidney defects in the digeorge syndrome

    Get PDF
    BACKGROUND The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. METHODS We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. RESULTS We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P = 4.5×1014). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-Altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. CONCLUSIONS We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    A mutation of angiotensinogen in a patent with preeclampsia leads to alteredkinetics of the renin-angiotensin system

    No full text
    Angiotensinogen exhibits genetic linkage to and association with essential hypertension and preeclampsia, a common hypertensive disorder of pregnancy; however, the polymorphisms detected thus far provide no functional clues. In a preeclamptic patient, we have identified a mutation leading to the replacement of leucine by phenylalanine at position 10 of mature angiotensinogen (L10F), the site of renin cleavage. Kinetic analyses of the enzymes of the renin-angiotensin system, using either model peptides or full-length substrates, show that this mutation significantly alters the reactions with both renin and angiotensin-converting enzyme. For the renin reaction on a full-length substrate, this substitution leads to a 10-fold decrease in Km (from 1.1 to 0.09 microM) and a 5-fold decrease in kcat (from 1.0 to 0.22 s-1); as a result, catalytic efficiency (kcat/Km) is increased by a factor of 2 (1.1 versus 2.4 microM-1 s-1). In the reaction of angiotensin-converting enzyme on angiotensin decapeptides, the substitution has no effect on Km (38.0 versus 30.0 microM), but increases kcat and catalytic efficiency > 2-fold (kcat = 15.0 versus 37.0 s-1; kcat/Km = 0.41 versus 1.23). The renin-angiotensin system, challenged by the profound physiological adaptations of pregnancy, is perturbed in preeclampsia; consequently, the L10F mutation may promote this condition in carrier subjects

    Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension

    No full text
    Despite advances in the diagnosis and management of idiopathic noncirrhotic portal hypertension, its pathogenesis remains elusive. Insight may be gained from study of early-onset familial idiopathic noncirrhotic portal hypertension, in which Mendelian mutations may account for disease. We performed exome sequencing of eight subjects from six kindreds with onset of portal hypertension of indeterminate etiology during infancy or childhood. Three subjects from two consanguineous families shared the identical rare homozygous p.N46S mutation in DGUOK, a deoxyguanosine kinase required for mitochondrial DNA replication; haplotype sharing demonstrated that the mutation in the two families was inherited from a remote common ancestor. All three affected subjects had stable portal hypertension with noncirrhotic liver disease for 6-16 years of follow-up. This mutation impairs adenosine triphosphate binding and reduces catalytic activity. Loss-of-function mutations in DGUOK have previously been implicated in cirrhosis and liver failure but not in isolated portal hypertension. Interestingly, treatment of patients with human immunodeficiency viral infection with the nucleoside analogue didanosine is known to cause portal hypertension in a subset of patients and lowers deoxyguanosine kinase levels in vitro; the current findings implicate these effects on deoxyguanosine kinase in the causal mechanism

    The connecting tubule is the main site of the furosemide-induced urinary acidification by the vacuolar H+-ATPase

    Get PDF
    Final urinary acidification is achieved by electrogenic vacuolar H(+)-ATPases expressed in acid-secretory intercalated cells (ICs) in the connecting tubule (CNT) and the cortical (CCD) and initial medullary collecting duct (MCD), respectively. Electrogenic Na(+) reabsorption via epithelial Na(+) channels (ENaCs) in the apical membrane of the segment-specific CNT and collecting duct cells may promote H(+)-ATPases-mediated proton secretion by creating a more lumen-negative voltage. The exact localization where this supposed functional interaction takes place is unknown. We used several mouse models performing renal clearance experiments and assessed the furosemide-induced urinary acidification. Increasing Na(+) delivery to the CNT and CCD by blocking Na(+) reabsorption in the thick ascending limb with furosemide enhanced urinary acidification and net acid excretion. This effect of furosemide was abolished with amiloride or benzamil blocking ENaC action. In mice deficient for the IC-specific B1 subunit of the vacuolar H(+)-ATPase, furosemide led to only a small urinary acidification. In contrast, in mice with a kidney-specific inactivation of the alpha subunit of ENaC in the CCD and MCD, but not in the CNT, furosemide alone and in combination with hydrochlorothiazide induced normal urinary acidification. These results suggest that the B1 vacuolar H(+)-ATPase subunit is necessary for the furosemide-induced acute urinary acidification. Loss of ENaC channels in the CCD and MCD does not affect this acidification. Thus, functional expression of ENaC channels in the CNT is sufficient for furosemide-stimulated urinary acidification and identifies the CNT as a major segment in electrogenic urinary acidification
    corecore