
T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

n engl j med   nejm.org 1

The authors’ full names, academic de-
grees, and affiliations are listed in the Ap-
pendix. Address reprint requests to Dr. 
Sanna-Cherchi at the Division of Ne-
phrology, Columbia University, College 
of Physicians and Surgeons, New York, 
NY 10032, or at  ss2517@  cumc . columbia .-
edu, or to Dr. Katsanis at the Center for 
Disease Modeling, 466A Nanaline Duke 
Bldg., Box 3709, Duke University Medical 
Center, Durham, NC 27710, or at 
 katsanis@  cellbio . duke . edu.

Drs. Lopez-Rivera, Liu, Verbitsky, Ander-
son, and Capone contributed equally to 
this article.

This article was published on January 25, 
2017, at NEJM.org.

DOI: 10.1056/NEJMoa1609009

Copyright © 2017 Massachusetts Medical Society.

BACKGROUND

The DiGeorge syndrome, the most common of the microdeletion syndromes, affects 

multiple organs, including the heart, the nervous system, and the kidney. It is caused 

by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is 

unknown.

METHODS

We conducted a genomewide search for structural variants in two cohorts: 2080 pa-

tients with congenital kidney and urinary tract anomalies and 22,094 controls. We 

performed exome and targeted resequencing in samples obtained from 586 addi-

tional patients with congenital kidney anomalies. We also carried out functional 

studies using zebrafish and mice.

RESULTS

We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with con-

genital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; 

P = 4.5×10−14). We localized the main drivers of renal disease in the DiGeorge syn-

drome to a 370-kb region containing nine genes. In zebrafish embryos, an induced 

loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl 

alone was sufficient to induce defects. Five of 586 patients with congenital urinary 

anomalies had newly identified, heterozygous protein-altering variants, including 

a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model 

induced developmental defects similar to those observed in patients with congenital 

urinary anomalies.

CONCLUSIONS

We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney 

defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract 

anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be 

critical to the phenotype, with haploinsufficiency of CRKL emerging as the main 

genetic driver. (Funded by the National Institutes of Health and others.)
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D
eletions on chromosome 22q11.2 

are the most common cause of the Di-

George syndrome (Online Mendelian In-

heritance in Man [OMIM] number, 188400) and 

the velocardiofacial syndrome (OMIM number, 

192430) and constitute the most common micro-

deletion disorder in humans, with an estimated 

prevalence of 1 in 2000 to 4000 live births.1-3 The 

DiGeorge syndrome is a debilitating, multisys-

temic condition that features (with variable ex-

pressivity) cardiac malformations, velopharyngeal 

insufficiency, hypoparathyroidism with hypocal-

cemia, and thymic aplasia with immune defi-

ciency. Additional phenotypes include neurodevel-

opmental defects and urogenital malformations.4-7 

The long arm of chromosome 22 contains multi-

ple segmental duplications (low-copy repeats) that 

confer a predisposition to genomic rearrange-

ments.8-10 Most frequently, the DiGeorge syn-

drome is caused by a de novo heterozygous dele-

tion of approximately 2.5 mb in length on 

chromosome 22q11.2 between low-copy repeats 

(LCR22) A and D. Less frequently, the syndrome 

is the result of deletions between LCR22 A and B, 

between B and D, or between C and D.5,8,11

Congenital kidney and urinary tract anoma-

lies are present in approximately 30% of the pa-

tients with the DiGeorge syndrome.4,6,12,13 Al-

though some of the hallmarks of this syndrome 

(e.g., heart defects) can be attributed in part to 

haploinsufficiency of TBX1,14-18 the identity of the 

genes that are responsible for such congenital 

kidney and urinary tract anomalies remains un-

known.

Me thods

Study Samples

We studied samples obtained from 2666 patients 

affected by congenital kidney and urinary tract 

anomalies at 26 international centers, along with 

additional samples provided by the Chronic Kid-

ney Disease in Children Study (see the Methods 

section and Table S1 in the Supplementary Ap-

pendix, available with the full text of this article 

at NEJM.org). We performed genomewide geno-

typing for analysis of copy-number variations in 

2080 of these samples. Among an additional 586 

patients with congenital kidney and urinary tract 

anomalies, we performed either whole-exome se-

quencing (in 60 samples) or targeted next-gener-

ation sequencing and Sanger validation (in 526 

samples). All the patients provided written in-

formed consent. The study was approved by the 

institutional review board at each site. (Descrip-

tions of the patients, analyses of convolution de-

fects in zebrafish, analysis of tissue localization 

in the patients and zebrafish, and the generation 

and analysis of a mouse model are provided in the 

Methods section in the Supplementary Appendix.)

Genetic Analyses

Using samples obtained from 2080 patients with 

congenital kidney and urinary tract anomalies and 

22,094 controls, we performed genomewide geno-

typing for analysis of copy-number variation by 

means of high-density single-nucleotide polymor-

phism (SNP) microarrays manufactured by Illu-

mina (1820 samples) or Affymetrix (260 samples), 

as described previously.19-21 We also performed 

whole-exome sequencing on samples obtained 

from 60 patients through the Yale Center for 

Mendelian Genomics, as described previously.22-24 

We performed high-throughput next-generation 

sequencing for eight genes in the 370-kb mini-

mal region of overlap for the DiGeorge syndrome 

in samples obtained from an additional 526 pa-

tients using microfluidic polymerase-chain-reac-

tion capture (Fluidigm) coupled with next-gener-

ation sequencing on an Illumina 2500 HiSeq 

system, as described previously.25,26 We subjected 

CRKL coding exons to next-generation resequenc-

ing in samples obtained from 576 unaffected 

controls and from 1152 patients affected by IgA 

nephropathy but with normal results on renal 

ultrasonography. These additional 1728 controls 

were matched with the patients according to their 

ancestral origin and recruitment site.

R esult s

Patients with 22q11.2 Deletions

In a genomewide search for rare copy-number 

variations in a discovery cohort of 1752 patients 

with congenital kidney and urinary tract anoma-

lies, we identified deletions at the chromosome 

22q11.2 locus in 11 patients (0.6%) and in 3 of 

22,094 population controls (0.01%; odds ratio for 

patients versus controls, 46.4; P = 9.7×10−11). An 

analysis of breakpoints indicated that all deletions 

in the 11 patients overlapped with the common 

deletion between LCR22 A and D: 2 patients 

had the classic deletion of DNA between A and D, 

1 patient had a smaller deletion (bounded by  

The New England Journal of Medicine 

Downloaded from nejm.org at SBBL on January 25, 2017. For personal use only. No other uses without permission. 

 Copyright © 2017 Massachusetts Medical Society. All rights reserved. 



n engl j med   nejm.org 3

Genetic Driver of Kidney Defects in the DiGeorge Syndrome

B and D), and 8 patients had the smallest dele-

tion, between C and D (Table 1 and Fig. 1, and 

Table S2 in the Supplementary Appendix).

Of the 11 patients, 9 had renal agenesis or 

hypodysplasia, and 2 had an isolated ureteric 

phenotype, findings indicating that the 22q11.2 

locus between LCR22 C and D is critical for hu-

man nephrogenesis and is possibly specific for 

renal agenesis or hypodysplasia (in 9 of 765 pa-

tients [1.2%]). In a replication study involving an 

additional 328 patients with renal agenesis or hy-

podysplasia, we identified 3 (0.9%) with 22q11.2 

deletions, for a total of 14 patients with these 

deletions (Table 1 and Fig. 1). Taken together, we 

identified deletions at this locus in 12 of 1093 

patients (1.1%) with renal agenesis or hypodyspla-

sia, as compared with 3 of 22,094 controls (odds 

ratio, 81.5; P = 4.5×10−14), which implicates dele-

tions at the locus associated with the DiGeorge 

syndrome as the second most common genomic 

disorder of the kidney and urinary tract after the 

17q12 microdeletion associated with the renal 

cysts and diabetes syndrome (Table S2 in the 

Supplementary Appendix).19,27

Of the 14 patients with the 22q11.2 deletion, 

Patients P1, P2, and replication Patient 1 (RP1) 

carried the most frequent deletion between LCR22 

A and D; in Patient P2, the deletion was inher-

ited from the mother, in whom a clinical diag-

nosis of the DiGeorge syndrome had not been 

made. In all the patients, the molecular genetic 

diagnosis preceded a clinical diagnosis of the 

DiGeorge syndrome (in which some but not all 

features of the syndrome were observed) and 

had a direct effect on the patient’s treatment. In 

patients with deletions between LCR22 B and D 

and C and D, additional urinary tract defects con-

sisted of vesicoureteral reflux in 6 patients and 

hypospadia in 1 patient. Extrarenal defects were 

rare and mild in patients with deletions between 

LCR22 B and D and C and D. The deletion be-

tween LCR22 C and D that was identified in 

Patient P10 was also observed in a sibling who 

was affected by left renal agenesis and an unde-

scended testis.

The analysis of the breakpoints in copy-num-

ber variation that was based on SNP array data 

localized the critical region for the phenotype as-

sociated with congenital kidney and urinary tract 

anomalies to a locus of approximately 370 kb, 

which contains nine genes (Fig. 1, and Table S3 

in the Supplementary Appendix). This region ex-

cluded the gene encoding T-box 1 (TBX1), a protein 

that is not expressed in the murine embryonic 

kidney,28 so Tbx1-null mice have normal early 

nephrogenesis (Fig. S2 in the Supplementary Ap-

pendix). Interrogation of the “22q and You” data-

base from the Children’s Hospital of Philadelphia 

identified kidney malformations in 2 of 10 patients 

with the 22q11.2 deletion between LCR22 C and 

D (Table S4 in the Supplementary Appendix). 

Finally, we reexamined the three controls with 

22q11.2 deletions; one carried the typical dele-

tion between LCR22 A and D, one the deletion 

between B and D, and one the deletion between 

C and D. We obtained clinical records for Con-

trol C1, who had Parkinson disease, congenital 

hypoparathyroidism, and advanced chronic kid-

ney disease (Table S5 in the Supplementary Ap-

pendix). Thus, we found a patient with undiag-

nosed DiGeorge syndrome with renal involvement 

among our 22,000 population controls, which 

provided further support for the pathogenicity of 

the 22q11.2 deletion in patients with congenital 

kidney and urinary tract anomalies. After removal 

of this patient from the control data set, the 

strength of association between 22q11.2 deletions 

and renal agenesis or hypodysplasia increased 

further (12 of 1093 patients vs. 2 of 22,093 con-

trols, P = 8.5×10−15; odds ratio, 123.7).

Functional Modeling in Zebrafish

The genetic data suggested that dosage perturba-

tion of one or more of the nine genes in the micro-

deletion on 22q11.2 is a driver of congenital kidney 

and urinary tract anomalies. We had previously 

found that systematic in vivo suppression of ex-

perimentally tractable genes within a deletion 

copy-number variant, coupled with quantitative 

phenotyping, can determine the contribution of 

specific transcripts to disease associated with 

copy-number variation in humans.29-31

We first sought to establish a phenotypic sur-

rogate for congenital kidney and urinary tract 

anomalies in zebrafish embryos. Previous stud-

ies in mice and humans have shown the critical 

role of the gene encoding ret proto-oncogene (RET) 

for kidney development and branching morpho-

genesis.32-35 We therefore injected an established 

morpholino oligonucleotide (MO) against RET 36 

into zebrafish that were engineered to enable 

visualization of the developing nephron and then 

examined the convolution of the pronephros (the 

earliest developmental stage in the zebrafish) at 
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4.5 days after fertilization.37 The injection of 8.0 ng 

of a splice-blocking MO, which suppressed ap-

proximately 80% of wild-type message and in-

duced the inclusion of intron 2, followed by 

staining of embryos with an antibody against 

sodium–potassium ATPase, induced convolution 

defects of the proximal pronephros and an over-

all reduction in the length of the tubules (Fig. S3 

in the Supplementary Appendix). We captured this 

phenotype by measuring the length of the tubule 

corrected for the overall length of the embryonic 

body axis, thus controlling for possible develop-

mental delay due to the mechanical manipula-

tion of embryos (P<0.05 for all comparisons 

between MO knockdown and wild type) (Fig. 2A 

and 2B). This phenotype was specific; not only 

were we able to rescue this anomaly by coinjec-

tion of 200 pg of human capped RET messenger 

RNA (mRNA) (Fig. 2B), but deletions at this locus 

that were mediated by CRISPR–Cas9 also repro-

duced this anomaly in a manner indistinguish-

able from the MO, both qualitatively and quan-

titatively (Fig. 2C and 2D). We therefore proceeded 

to deploy this assay across all testable genes 

within the region of copy-number variation.

First, we used the Basic Local Alignment 

Figure 1. Genomic Organization of Chromosome 22q11.2 and the Deletions Associated with Kidney and Urinary 

Tract Malformations Identified in This Study.

In approximately 90% of the patients with the DiGeorge syndrome, the congenital disorder is caused by a classic 

de novo heterozygous deletion of approximately 2.5 mb in length spanning chromosome 22q11.2 low-copy repeats 

(LCR22) A and D, as shown in blue. Less than 10% of the patients with this syndrome carry the critical 1.5-mb dele-

tion between LCR22 A and B. Shown in red are deletions that were identified in 14 patients who were affected by 

congenital anomalies of the kidney and urinary tract among the 2080 patients who were tested. According to the 

megabase coordinates for the Human Genome 19 release, the proximal and distal breakpoints for the chromosome 

22q11.2 deletions that were identified in the patients are as follows: P1, 18.88 to 21.47 mb; P2, 18.89 to 21.47 mb; 

P3, 20.73 to 21.46 mb; P4, 21.02 to 22.47 mb; P5, 21.05 to 21.47 mb; P6, 21.06 to 21.47 mb; P7, 21.06 to 21.46 mb; 

P8, 21.06 to 21.46 mb; P9, 21.07 to 21.46 mb; P10, 21.08 to 21.47 mb; P11, 21.09 to 21.47 mb; Patient 1 from the 

replication cohort (RP1), 18.88 to 21.46 mb; RP2, 20.74 to 21.46 mb; and RP3, 20.74 to 21.46 mb. The deletion be-

tween LCR22 C and D defines the smallest region of overlap for congenital kidney disease among patients with 

22q11.2 deletions.
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Search Tool (BLAST) algorithm for sequence 

searching, in which we detected orthologues for 

seven of nine genes. RNA sequencing data indi-

cated that all seven genes were expressed in the 

early embryo, between 2 and 4 days after fertil-

ization.38 We therefore designed MOs to knock 

down the expression of these genes and injected 

them into zebrafish reporter lines in parallel with 

the ret–MO as a control. For four of the transcripts 

(lztr1, pi4ka, serpind1, and slc7a4) we observed no 

differences in convolution complexity or length 

of the pronephros between the knockdown zebra-

fish and controls in 26 to 34 embryos, with each 

analysis repeated twice with blinded scoring 

(Fig. S4 in the Supplementary Appendix). In con-

trast, the suppression of crkl expression or interrup-

tion of splicing of aifm3 and snap29 phenocopied 

the pathologic features of RET (Fig. 2A and 2B). 

These phenotypes could be rescued for each of the 

three genes by coinjection with human mRNA 

(Fig. 2B). In addition, deletions of snap29 and crkl 

mediated by CRISPR–Cas9 on the day of fertiliza-

tion induced insertions or deletions in 60 to 80% 

of cells within each mutant embryo (Fig. S5 in the 

Supplementary Appendix). (The gene aifm3 was 

intractable to this method.) Subsequently, the mu-

tant fish fully reproduced the renal disease (Fig. 2C 

and 2D). We observed no renal phenotypes when 

each human mRNA was injected alone, nor did 

we find any other gross morphologic defects in 

embryos subjected to either MO knockdown or 

overexpression at the studied developmental time 

points that might indicate nonspecific toxicity. 

Because kidney morphogenesis could be affected 

by extrarenal defects (e.g., loss of cardiac output 

and collective cell migration of the nephron in-

duced by loss of flow), we analyzed heart func-

tion in both ret and crkl mutants and found no 

effect on the morphologic features or rate of the 

heart. We also found no evidence of kidney cysts, 

which would be expected if cilia-dependent flow 

were to be impaired. Analysis of body length as 

an indication of global-developmental delay 

showed no significant difference between “knocked 

down” zebrafish and control zebrafish (Fig. S6 

in the Supplementary Appendix). Thus, we con-

cluded that the defects we observed were not due 

to the known indirect causes of failed nephron 

convolution in zebrafish and support our use of 

this assay as a screening technique for intrinsic 

kidney defects.

Previous functional dissections of copy-num-

ber variation have revealed a complex genetic ar-

chitecture, in which a single driver may account 

for the induction of disease either alone or in cis 

epistasis with other genes within the copy-num-

ber variation.29-31 We tested this possibility in 

vivo by asking whether the three transcripts in 

zebrafish embryos that induce congenital kidney 

and urinary tract anomalies could interact ge-

netically. For this purpose, we injected embryos 

with subeffective doses of each transcript, with 

the requirement that each dose by itself should 

induce modest or no disease; we then tested all 

possible pairwise combinations. We observed no 

genetic interaction between crkl and either aifm3 

or snap29. In contrast, cosuppression of aifm3 with 

Figure 2 (facing page). Functional Modeling of the  

DiGeorge Syndrome Terminal Deletion Genes  

Associated with Kidney and Urinary Tract  

Malformations.

Panel A shows zebrafish larvae 4.5 days after fertiliza-

tion, in which the proximal tubule is folded into a hair-

pin structure, displaying proper anterior convolution 

in noninjected control embryos (staining with anti-

body against sodium–potassium ATPase). Knockdown 

of ret, aifm3, crkl, and snap29 by the injection of 8.0 ng 

of a splice-blocking morpholino oligonucleotide (MO) 

against RET resulted in major convolution defects, 

which are apparent by the failure of the anterior por-

tion of the pronephros (the earliest developmental 

stage in the zebrafish) to progress, along with an over-

all reduction in the length of the tubules. Panel B 

shows the relative length of the pronephros, which 

was defined as the ratio of the length of the proneph-

ros (a) to the length of the body axis (b), in individual 

larvae (inset). The number of replicate measurements 

were as follows: control or sham-injected control, 177 

in Panel A and 68 in Panel B; ret-MO, 50; ret-

MO+mRNA, 42; aifm3-MO, 38; aifm3-MO+mRNA, 42; 

crkl-MO, 43; crkl-MO+mRNA, 58; snap29-MO, 48; 

snap29-MO+mRNA, 39; ret-gRNA+Cas9, 44; crkl-

gRNA+Cas9, 31; and snap29-gRNA+Cas9, 41). Mor-

phant phenotypes could be rescued by the coinjection 

of each respective human messenger RNA (mRNA).  

In each box-and-whisker plot, the horizontal line rep-

resents the median, the top and bottom of the boxes 

the interquartile range, and the I bars the minimum 

and maximum values. Panel C shows embryos that 

have been injected with CRISPR–Cas9 and that are re-

producing the convolution defects observed in the 

morphant embryos. Guide RNA (gRNA) that targeted 

each respective gene was coinjected with purified 

Cas9 protein, and the relative length of the proneph-

ros was measured in founders, as shown in Panel D. 

In Panels B and D, a single asterisk indicates P<0.05, 

two asterisks P<0.01, and three asterisks P<0.001.  

WT denotes wild type.
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snap29 phenocopied the convolution defect of 

strong morphants and CRISPR mutants, which 

suggested a contributory role to the copy-number 

variation pathology. This interaction was specific 

and not due to toxicity caused by the presence of 

multiple MOs, since it could be rescued by coin-

jection of SNAP29 mRNA (Figs. S7 and S8 in the 

Supplementary Appendix).

Whole-Exome and Targeted Sequencing  

of CRKL

We asked whether sporadic patients with con-

genital kidney and urinary tract anomalies might 

have loss-of-function lesions in any of the nine 

genes included in the minimal region of overlap 

for the kidney defects of the DiGeorge syndrome. 

We first queried exome-sequencing data from 

60 patients with renal agenesis or hypodysplasia. 

None of the genes showed excess burden of rare 

truncating mutations as compared with controls 

(Table S6 in the Supplementary Appendix). LZTR1, 

P2RX6, and SLC7A4 have a high frequency of loss-

of-function mutations (defined as premature ter-

mination, splicing, and frameshift mutations), a 

prevalence that approaches or exceeds that of 

such anomalies in the general population. Con-

versely, SERPIND1, SNAP29, CRKL, and THAP7 

carry loss-of-function mutations in no more than 

2 of 10,000 persons. Among more than 60,500 

publicly available population controls from the 

Exome Aggregation Consortium (ExAC) database 

(exac.broadinstitute.org), only 1 had a high-qual-

ity loss-of-function variant in CRKL, which ranks 

in the top second percentile in the genome for 

haploinsufficiency — in other words, there is a 

high probability of a detrimental effect on pheno-

type when only one copy of the gene is deleted. 

This finding suggests that loss-of-function vari-

ations in CRKL have deleterious effects on ge-

netic fitness (Table S3 in the Supplementary 

Appendix).39

We also performed targeted next-generation 

resequencing of all 107 coding exons of PI4KA, 

SERPIND1, SNAP29, CRKL, AIFM3, THAP7, P2RX6, 

and SLC7A4 in 526 patients with renal agenesis or 

hypodysplasia. We identified six loss-of-function 

variants in 11 patients: two in SERPIND1, one in 

CRKL, one in AIFM3, and two in P2RX6 (in 7 pa-

tients) (Table S7 in the Supplementary Appendix). 

Loss-of-function mutations in SERPIND1 have been 

associated with a mendelian clotting disease (hep-

arin cofactor II deficiency) that has no known 

associations with kidney and urinary tract devel-

opment.40 In contrast, the CRKL truncating mu-

tation, p.Q31*, was found in a patient (P13) with 

isolated unilateral renal agenesis and was pre-

dicted to result in haploinsufficiency. We also 

identified four additional missense variants that 

were absent from the ExAC database, that were 

conserved across vertebrates, and that were pre-

dicted to affect protein structure and function 

(Table S8 and Figs. S9 and S10 in the Supple-

mentary Appendix).

Whole-exome sequencing of DNA obtained 

from P13 did not show pathogenic mutations in 

genes that had previously been implicated in 

congenital kidney and urinary tract anomalies or 

loss-of-function variants in newly plausible can-

didates (Table S9 in the Supplementary Appen-

dix). Finally, because of the formal possibility 

that the discovered CRKL variants were popula-

tion-specific polymorphisms, we performed tar-

geted resequencing on samples obtained from 

576 additional controls and from 1152 patients 

with IgA nephropathy and normal results on 

renal ultrasonography who were matched with 

our patients according to ethnic background and 

recruitment site. All CRKL variants were absent 

in the more than 60,500 population controls from 

the ExAC database and in the 1728 controls. Ag-

gregating our sequencing data and performing 

burden tests between our 586 patients with con-

genital kidney and urinary tract anomalies and 

33,352 European controls from ExAC or 1728 

ethnically and geographically matched controls 

showed significant excess of rare functional CRKL 

variants in our patients (P = 3.7×10−3 by Fisher’s 

exact test for the comparison with ExAC controls; 

odds ratio, 5.2; and P = 4.9×10−3 for the compari-

son with matched controls; odds ratio, 14.8) (Ta-

ble S10 in the Supplementary Appendix).

Expression and Functional Studies of CRKL

We performed mRNA and protein expression stud-

ies in relevant tissues and examined a mouse 

model with a Crkl mutation. In humans, CRKL 

protein showed mild, diffuse cytoplasmic ex-

pression in both ureteric bud and metanephric 

mesenchyme derivatives during the sixth week 

of fetal development (Fig. S11A in the Supple-

mentary Appendix). At week 21, CRKL was de-

tected only in proximal tubules and collecting 
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Figure 3. Localization of Crkl in Developing Urinary Tracts in Mice and Zebrafish and Phenotypes of Crkl Knockout Mice.

Panel A shows immunostaining for Crkl in kidney obtained from a transgenic mouse on embryonic day E15.5, in which Six2 has been 

tagged with enhanced green fluorescent protein (GFP), with specific Crkl staining of the ureteric bud (in red) surrounded by Six2-posi-

tive cap mesenchyme cells (in green) (subpanel a). A magnified field shows ureteric-bud branching within condensing metanephric 

mesenchyme (subpanel b). Panel B shows specific pronephros expression of crkl in zebrafish, as shown by colocalization after staining 

with antibody against sodium–potassium ATPase. In the orientation symbol, D denotes dorsal, V ventral, C caudal, and R rostral. Panel C 

shows images of negative controls (i.e., fish treated with fluorophore-conjugated secondary antibodies only). In Panels B and C, the 

scale bars represent 100 µm. In a mouse model that targets Crkl exon 2, three crosses with transgenic Cre-recombinase mice were creat-

ed to effect the deletion of exon 2 in specific compartments: E2a-Cre for global knockout, Six2-Cre in the cap mesenchyme, and Hoxb7 

in the structures derived from ureteric buds. Panel D shows tissue from a Six2-Cre mouse in which duplication of the right kidney is ac-

companied by an irregular, dysplastic pattern or ureteric-bud branching on embryonic day E15.5. Panel E shows tissue from an E2a-Cre 

mouse in which a single kidney with duplicated ureters (arrowheads) is accompanied by failure of medullary and renal papillary develop-

ment on day E14.5. Panel F shows tissue from a Six2-Cre mouse, in which the kidney is hydronephrotic with dilated pelvis, absence of 

medullary architecture, and several microcystic glomeruli and tubules on day E15.5.

D
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Duplicated Mouse Kidney
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Embryonic Mouse Kidney

Crkl Na-K ATPase
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tubules at the apical side of epithelial cells (Fig. 

S11B in the Supplementary Appendix). In the kid-

ney of a 1.5-year-old boy, we observed abundant 

CRKL expression in the proximal and collecting 

tubules at the apical side, along with diffuse cy-

toplasmic signaling in glomerular endothelial 

cells, podocytes, Bowman’s capsule, and distal 

tubules (Fig. S11C in the Supplementary Appen-

dix). The expression of SNAP29 and AIFM3, al-

though present at very low levels in zebrafish 

pronephros (not shown), was seen in the urinary 

tract in fetuses and children (Figs. S12 and S13 

in the Supplementary Appendix).

In the mouse kidney on embryonic day E15.5, 

Crkl showed specific expression in structures de-

rived from the ureteric bud and, occasionally, in 

S-shaped bodies and developing proximal tubules 

(Fig. 3A, and Fig. S14 in the Supplementary Ap-

pendix). In zebrafish, crkl was specifically ex-

pressed in the pronephros (Fig. 3B and 3C). RNA 

studies that were performed with the use of flow 

cytometry and cell sorting, along with in situ hy-

bridization, confirmed that crkl was expressed in 

the pronephric convoluted tubule and proneph-

ric duct (Figs. S15 and S16 in the Supplementary 

Appendix).

Finally, we engineered a mouse model that 

targets Crkl exon 2. We generated three different 

crosses with transgenic Cre-recombinase mice to 

effect the deletion of exon 2 in specific compart-

ments: E2a-Cre for global knockout, Six2-Cre in 

the cap mesenchyme, and Hoxb7 in the ureteric 

bud–derived structures. We analyzed four litters 

(one E2a, one Hoxb7, and two Six2) at embryonic 

days E14.5 through E15.5. We observed develop-

mental anomalies in the kidney and urinary tract, 

including bilaterally duplicated kidneys, duplicat-

ed ureters, ureteric bud–branching defects, dys-

plastic features, hydronephrosis, microcystic tu-

bules and glomeruli, and tubular and glomerular 

capsule dilatation, in eight mice (Fig. 3D, 3E, 

and 3F, and Fig. S17 in the Supplementary Ap-

pendix). We observed phenotypes related to con-

genital kidney and urinary tract anomalies in 

embryos that were heterozygous and those that 

were homozygous for the targeted deletion.

Discussion

We determined that deletions in the telomeric 

22q11.2 classic region are associated with spo-

radic congenital kidney and urinary tract anom-

alies and renal disease in the DiGeorge syndrome. 

Correlations between genotype and phenotype 

suggest that these variants are specific for kid-

ney parenchyma defects (i.e., renal agenesis or 

hypodysplasia), rather than ureteric and lower 

urinary tract disease. However, the presence of 

these variants may be an indication of kidney dis-

ease in persons with apparently isolated ureteric 

defects, since the two patients with obstructive 

uropathy and vesicoureteral reflux whom we iden-

tified in this study showed renal insufficiency. We 

observed that the 22q11.2 deletions were present 

in 1.1% of our sample of 1093 patients with renal 

agenesis or hypodysplasia, which suggests that 

such deletions constitute the second most com-

mon structural variant associated with congeni-

tal kidney and urinary tract anomalies after the 

17q12 deletion that causes the renal cysts and dia-

betes syndrome, which we identified in 2.2% of 

patients with renal agenesis or hypodysplasia from 

the same cohort. Our data also support the hy-

pothesis that 22q11.2 microdeletions are medically 

actionable variants that confer a predisposition to 

renal hypodysplasia and kidney disease.

A review of the literature indicates the pres-

ence of kidney and urinary tract defects in about 

one third of the patients with chromosome 

22q11.2 deletions spanning LCR22 B and D or C 

and D,5,41 a prevalence that is nearly identical to 

that of kidney and urinary tract defects among 

patients with the DiGeorge syndrome caused by 

the typical 22q11.2 deletions spanning LCR22 A 

and D.4,6,42 These observations, together with our 

data, strongly suggest that the kidney disease as-

sociated with the DiGeorge syndrome is attribut-

able largely to haploinsufficiency of one or more 

genes located between LCR22 C and D.

Genetic interaction studies using zebrafish sug-

gested a complex genetic architecture, in which 

haploinsufficiency of crkl had a potent detrimental 

effect on renal development, whereas knockdown 

of its flanking genes, aifm3 and snap29, generated 

the phenotype only with cosuppression. Consis-

tent with these data, we found deleterious CRKL 

variants, including a premature truncating allele, 

in approximately 1% of the patients with sporadic 

congenital renal agenesis or hypodysplasia. We 

obtained other molecular data in humans, mice, 

and zebrafish that supported the role of CRKL in 

urinary tract development.

CRKL encodes an adapter protein that regulates 

intracellular signaling transduction from multi-
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ple growth factors, including the fibroblast growth 

factors,43 which are key regulators of kidney and 

urinary tract development.44,45 Inactivation of Crkl 

in mice recapitulates some of the phenotypes of 

the DiGeorge syndrome, in particular cardiac mal-

formations,46,47 but the kidney phenotype in the 

mutant embryos had not hitherto been studied. 

We observed that genetic inactivation of Crkl in 

the mouse model results in developmental phe-

notypes of the kidney and urinary tract that re-

semble congenital anomalies in the human uri-

nary tract.

We suggest that CRKL mutations sensitize the 

genetic background and contribute to the pene-

trance of congenital kidney and urinary tract 

anomalies in patients with the DiGeorge syn-

drome. It is possible that other genes within or 

outside the locus of the DiGeorge syndrome and 

22q11.2 deletions might also be involved. Two of 

the genes in the minimal region were refractory 

to our studies, and it is possible that the deletion 

copy-number variant affects the expression of 

genes across the chromosome or elsewhere in the 

genome, as has been shown for other copy-num-

ber variants.48

In conclusion, our approach provides support 

for the causal role of CRKL in the pathogenesis of 

kidney developmental defects. Such defects occur 

specifically in the context of the DiGeorge syn-

drome and 22q11.2 deletions and, more broadly, 

in sporadic congenital kidney and urinary tract 

anomalies.

Supported by grants (1R01DK103184, 1R21DK098531, and 

UL1 TR000040, to Dr. Sanna-Cherchi; P50DK096415 and 

P30DK096493, to Dr. Katsanis; 2R01DK080099, to Dr. Gharavi; 

3U54DK104309, to Drs. Gharavi and Barasch; P01HD070454, to 

Ms. McDonald-McGinn and Dr. Morrow; 4R01GM030518, to Dr. 

Honig; R37HD033082, to Dr. Papaioannou; and 1R01DK105124, 

to Dr. Kiryluk) from the National Institutes of Health (NIH); a 

grant-in-aid (13GRNT14680075, to Dr. Sanna-Cherchi) from the 

American Heart Association; a grant (RF-2010-2307403, to Drs. 

Sanna-Cherchi and Ghiggeri) from the Joint Italian Ministry of 

Health and NIH Young Investigators Finalized Research; a grant 

(HG006504, to Dr. Lifton) from the National Human Genome 

Research Institute Centers for Mendelian Genomics; a grant (to 

Dr. Ghiggeri) from the Fondazione Malattie Renali nel Bambi-

no; a grant (AAE07007KSA, to Drs. Salomon and Jeanpierre) 

from the GIS-Institut des Maladies Rares; and a grant 

(AOM07129, to Drs. Salomon and Jeanpierre) from the Pro-

gramme Hospitalier de la Recherche Clinique Assistance Pub-

lique; by the Polish Ministry of Health (to Drs. Materna-Kiryluk  

and Latos-Bielenska); by the Polish Kidney Genetics Network 

(POLYGENES), the Polish Registry of Congenital Malformations 

(PRCM), and the NZOZ Center for Medical Genetics (GENESIS); 

by grants (to the Chronic Kidney Disease in Children Study) 

from the National Institute of Diabetes and Digestive and Kid-

ney Diseases and the Eunice Kennedy Shriver National Institute 

of Child Health and Human Development; by grants 

(U01DK66143, U01DK66174, U01DK082194, U01DK66116, and 

RO1DK082394) from the National Heart, Lung, and Blood Insti-

tute; and by the Paul Marks Scholar Award (to Dr. Sanna-Cher-

chi); and a Kolff Postdoc Fellowship Abroad grant (15OKK95, to 

Dr. Westland) from the Dutch Kidney Foundation.

Disclosure forms provided by the authors are available with 

the full text of this article at NEJM.org.

We thank the patients and their families for participating in 

the study; Katarzyna Zachwieja (Dialysis Unit, Jagiellonian Uni-

versity Medical College, Krakow, Poland), Daria Tomczyk (De-

partment of Pediatrics, Immunology and Nephrology Polish 

Mother’s Memorial Hospital Research Institute, Lodz, Poland), 

Tomasz Jarmolinski (Miedzyrzecz Regional Hospital, Depart-

ment of Pediatrics, Miedzyrzecz, Poland), Robert Pawluch and 

Maria Katarzyna Boroszewska-Kornacka (Neonatal and Inten-

sive Care Department, Medical University of Warsaw, Poland), 

Piotr Adamczyk (Department of Pediatrics, School of Medicine 

with the Division of Dentistry in Zabrze, Medical University of 

Silesia in Katowice, Poland), and Klaudia Korecka (Department 

of Pediatric Surgery and Urology, Medical University of Silesia, 

Upper Silesian Child’s Health Center Katowice, Poland) for re-

cruting patients for this study; and Cyrus Zabetian (University of 

Washington, Seattle) and Haydeh Payami (University of Ala-

bama, Birmingham) for sharing clinical and genetic data from 

the control population.

Appendix

The authors’ full names and academic degrees are as follows: Esther Lopez-Rivera, Ph.D., Yangfan P. Liu, Ph.D., Miguel Verbitsky, 

Ph.D., Blair R. Anderson, Ph.D., Valentina P. Capone, M.D., Edgar A. Otto, Ph.D., Zhonghai Yan, Ph.D., Adele Mitrotti, M.D., Jeremiah 

Martino, Ph.D., Nicholas J. Steers, Ph.D., David A. Fasel, B.S., Katarina Vukojevic, M.D., Ph.D., Rong Deng, B.S., Silvia E. Racedo, 

Ph.D., Qingxue Liu, M.S., Max Werth, Ph.D., Rik Westland, M.D., Ph.D., Asaf Vivante, M.D., Gabriel S. Makar, B.S., Monica Bodria, 

M.D., Matthew G. Sampson, M.D., Christopher E. Gillies, Ph.D., Virginia Vega-Warner, Ph.D., Mariarosa Maiorana, M.D., Donald S. 

Petrey, Ph.D., Barry Honig, Ph.D., Vladimir J. Lozanovski, M.D., Ph.D., Rémi Salomon, Ph.D., Laurence Heidet, M.D., Wassila Carpen-

tier, Ph.D., Dominique Gaillard, M.S., Alba Carrea, Ph.D., Loreto Gesualdo, M.D., Daniele Cusi, M.D., Claudia Izzi, M.D., Francesco 

Scolari, M.D., Joanna A.E. van Wijk, M.D., Ph.D., Adela Arapovic, M.D., Mirna Saraga-Babic, Ph.D., Marijan Saraga, M.D., Nenad Ku-

nac, Ph.D., Ali Samii, M.D., Donna M. McDonald-McGinn, M.S., Terrence B. Crowley, Ph.D., Elaine H. Zackai, M.D., Dorota Drozdz, 

M.D., Monika Miklaszewska, M.D., Marcin Tkaczyk, M.D., Przemyslaw Sikora, M.D., Maria Szczepanska, M.D., Malgorzata Mizer-

ska-Wasiak, M.D., Grazyna Krzemien, M.D., Agnieszka Szmigielska, M.D., Marcin Zaniew, M.D., John M. Darlow, M.D., Ph.D., Prem 

Puri, M.D., David Barton, Ph.D., Emilio Casolari, M.D., Susan L. Furth, M.D., Ph.D., Bradley A. Warady, M.D., Zoran Gucev, M.D., 

Ph.D., Hakon Hakonarson, Ph.D., Hana Flogelova, M.D., Velibor Tasic, M.D., Ph.D., Anna Latos-Bielenska, M.D., Anna Materna-Kiryluk, 

M.D., Landino Allegri, M.D., Craig S. Wong, M.D., M.P.H., Iain A. Drummond, Ph.D., Vivette D’Agati, M.D., Akira Imamoto, Ph.D., 

Jonathan M. Barasch, M.D., Ph.D., Friedhelm Hildebrandt, M.D., Krzysztof Kiryluk, M.D., Richard P. Lifton, M.D., Ph.D., Bernice E. 

Morrow, Ph.D., Cecile Jeanpierre, Ph.D., Virginia E. Papaioannou, Ph.D., Gian Marco Ghiggeri, M.D., Ph.D., Ali G. Gharavi, M.D., 

Nicholas Katsanis, Ph.D., and Simone Sanna-Cherchi, M.D.

The authors’ affiliations are as follows: the Division of Nephrology (E.L.-R., M.V., V.P.C., Z.Y., A.M., J.M., N.J.S., D.A.F., R.D., M.W., 

G.S.M., M.B., J.M.B., K.K., A.G.G., S.S.-C.) and the Division of Nephrology in Medicine and Zuckerman Mind Brain Behavior Institute 

The New England Journal of Medicine 

Downloaded from nejm.org at SBBL on January 25, 2017. For personal use only. No other uses without permission. 

 Copyright © 2017 Massachusetts Medical Society. All rights reserved. 



n engl j med   nejm.org 12

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

(B.H.), the Departments of Systems Biology (D.S.P., B.H.), Biochemistry and Molecular Biophysics (B.H.), and Pathology (V.D.), and 

the Howard Hughes Medical Institute (D.S.P., B.H.), Columbia University, and the Department of Genetics and Development, Columbia 

University Medical Center (Q.L., V.E.P.), New York, and the Department of Genetics, Albert Einstein College of Medicine, Bronx (S.E.R., 

B.E.M.) — all in New York; the Center for Human Disease Modeling, Duke University, Durham, NC (Y.P.L., B.R.A., N. Katsanis); the 

Departments of Internal Medicine–Nephrology (E.A.O.) and Pediatrics–Nephrology (M.G.S., C.E.G., V.V.-W.), University of Michigan 

School of Medicine, Ann Arbor; the Department of Anatomy, Histology, and Embryology, School of Medicine, University of Split (K.V., 

M.S.-B.), and the Departments of Pediatrics (A.A., M. Saraga) and Pathology (N. Kunac), University Hospital of Split, Split, Croatia; the 

Department of Pediatric Nephrology, VU University Medical Center, Amsterdam (R.W., J.A.E.W.); the Department of Medicine, Boston 

Children’s Hospital (A.V., F.H.), and Harvard Medical School, Boston (A.V., F.H., I.A.D.), and the Nephrology Division, Massachusetts 

General Hospital, Charlestown (I.A.D.) — all in Massachusetts; the Division of Nephrology, Dialysis, Transplantation, and Laboratory 

on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa (M.B., A.C., G.M.G.), the Department of Clinical and Experimental Medicine, 

University of Parma (M.B., M. Maiorana, L.A.), and the Pediatric Surgery Unit, University Hospital of Parma (E.C.), Parma, the Section 

of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari (L.G.), the Department of Medical Sci-

ences, University of Milano, and Institute of Biomedical Technologies, Italian National Institute of Research ITB-CNR, Milan (D.C.), 

and Dipartimento Ostetrico-Ginecologico e Seconda Divisione di Nefrologia ASST Spedali Civili e Presidio di Montichiari (C.I.) and 

Cattedra di Nefrologia, Università di Brescia, Seconda Divisione di Nefrologia Azienda Ospedaliera Spedali Civili di Brescia Presidio di 

Montichiari (F.S.), Brescia — all in Italy; the Department of General and Transplant Surgery, University Hospital of Heidelberg, Ger-

many (V.J.L.); the Department of Pediatric Nephrology, Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte 

(R.S., L.H., C.J.), INSERM UMR 1163, Laboratory of Hereditary Kidney Diseases (R.S.), Necker–Enfants Malades Hospital, Paris Des-

cartes–Sorbonne Paris Cite University, Imagine Institute (R.S.), Sorbonne Universités, UPMC 06, Plateforme Post-génomique de la 

Pitié–Salpêtrière, UMS 2 Omique, Inserm US029 (W.C.), Paris, and the Department of Genetics, Centre Hospitalier Universitaire de 

Reims, Unité de Formation et de Recherche de Médecine, Reims (D.G.) — both in France; the Department of Neurology, University of 

Washington School of Medicine, and Northwest VA Parkinson’s Disease Research, Education and Clinical Centers, Seattle (A. Samii); 

the Division of Human Genetics, Department of Pediatrics, 22q and You Center, Children’s Hospital of Philadelphia and Perelman 

School of Medicine at the University of Pennsylvania (D.M.M.-M., T.B.C., E.H.Z., S.L.F.), Division of Nephrology, Children’s Hospital 

of Philadelphia (S.L.F.), and the Department of Genetics, University of Pennsylvania (H.H.), Philadelphia; the Dialysis Unit, Jagiellonian 

University Medical College (D.D.), and the Department of Pediatric Nephrology, Jagiellonian University Medical College (M. Miklasze-

wska), Krakow, the Department of Pediatrics, Immunology and Nephrology, Polish Mother’s Memorial Hospital Research Institute, 

Lodz (M.T.), the Department of Pediatric Nephrology Medical University of Lublin, Lublin (P.S.), the Department of Pediatrics, School 

of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice (M. Szczepanska), the Department of Pe-

diatrics and Nephrology, Medical University of Warsaw, Warsaw (M.M.-W., G.K., A. Szmigielska), and Krysiewicza Children’s Hospital 

(M.Z.) and the Department of Medical Genetics, Poznan University of Medical Sciences, and Center for Medical Genetics GENESIS 

(A.L.-B., A.M.-K.), Poznań — all in Poland; the Department of Clinical Genetics (J.M.D., D.B.), National Children’s Research Centre 

(J.M.D., P.P.), and University College Dublin School of Medicine (D.B.), Our Lady’s Children’s Hospital Crumlin, and the National 

Children’s Hospital Tallaght (P.P.), Dublin, Ireland; the Division of Pediatric Nephrology, Children’s Mercy Hospital, Kansas City, MO 

(B.A.W.); University Children’s Hospital, Medical Faculty of Skopje, Skopje, Macedonia (Z.G., V.T.); Faculty of Medicine, Palacky Uni-

versity, Olomouc, Czech Republic (H.F.); the Division of Pediatric Nephrology, University of New Mexico Children’s Hospital, Albuquer-

que (C.S.W.); Ben May Department for Cancer Research, University of Chicago, Chicago (A.I.); and the Department of Genetics, 

Howard Hughes Medical Institute, and Yale Center for Mendelian Genomics, Yale University, New Haven, CT (R.P.L.).

References

1. Lindsay EA. Chromosomal microdele-

tions: dissecting del22q11 syndrome. Nat 

Rev Genet 2001; 2: 858-68.

2. Devriendt K, Fryns JP, Mortier G, van 

Thienen MN, Keymolen K. The annual in-

cidence of DiGeorge/velocardiofacial syn-

drome. J Med Genet 1998; 35: 789-90.

3. McDonald-McGinn DM, Sullivan KE. 

Chromosome 22q11.2 deletion syndrome 

(DiGeorge syndrome/velocardiofacial syn-

drome). Medicine (Baltimore) 2011; 90: 1-18.

4. Kobrynski LJ, Sullivan KE. Velocar-

diofacial syndrome, DiGeorge syndrome: 

the chromosome 22q11.2 deletion syn-

dromes. Lancet 2007; 370: 1443-52.

5. Burnside RD. 22q11.21 Deletion syn-

dromes: a review of proximal, central, 

and distal deletions and their associated 

features. Cytogenet Genome Res 2015; 

146: 89-99.

6. Noël AC, Pelluard F, Delezoide AL, et al. 

Fetal phenotype associated with the 22q11 

deletion. Am J Med Genet A 2014; 164A: 

2724-31.

7. Bassett AS, Chow EW, Husted J, et al. 

Clinical features of 78 adults with 22q11 

Deletion Syndrome. Am J Med Genet A 

2005; 138: 307-13.

8. Edelmann L, Pandita RK, Spiteri E, et 

al. A common molecular basis for rear-

rangement disorders on chromosome 

22q11. Hum Mol Genet 1999; 8: 1157-67.

9. Saitta SC, Harris SE, Gaeth AP, et al. 

Aberrant interchromosomal exchanges 

are the predominant cause of the 22q11.2 

deletion. Hum Mol Genet 2004; 13: 417-28.

10. Shaikh TH, O’Connor RJ, Pierpont 

ME, et al. Low copy repeats mediate distal 

chromosome 22q11.2 deletions: sequence 

analysis predicts breakpoint mechanisms. 

Genome Res 2007; 17: 482-91.

11. Shaikh TH, Kurahashi H, Saitta SC, et 

al. Chromosome 22-specific low copy re-

peats and the 22q11.2 deletion syndrome: 

genomic organization and deletion end-

point analysis. Hum Mol Genet 2000; 9: 

489-501.

12. Kujat A, Schulz MD, Strenge S, Froster 

UG. Renal malformations in deletion 

22q11.2 patients. Am J Med Genet A 2006; 

140: 1601-2.

13. Wu HY, Rusnack SL, Bellah RD, et al. 

Genitourinary malformations in chromo-

some 22q11.2 deletion. J Urol 2002; 168: 

2564-5.

14. Yagi H, Furutani Y, Hamada H, et al. 

Role of TBX1 in human del22q11.2 syn-

drome. Lancet 2003; 362: 1366-73.

15. Paylor R, Glaser B, Mupo A, et al. 

Tbx1 haploinsufficiency is linked to be-

havioral disorders in mice and humans: 

implications for 22q11 deletion syn-

drome. Proc Natl Acad Sci U S A 2006; 103: 

7729-34.

16. Jerome LA, Papaioannou VE. Di-

George syndrome phenotype in mice mu-

tant for the T-box gene, Tbx1. Nat Genet 

2001; 27: 286-91.

17. Merscher S, Funke B, Epstein JA, et al. 

TBX1 is responsible for cardiovascular de-

fects in velo-cardio-facial/DiGeorge syn-

drome. Cell 2001; 104: 619-29.

18. Lindsay EA, Vitelli F, Su H, et al. Tbx1 

haploinsufficieny in the DiGeorge syn-

drome region causes aortic arch defects 

in mice. Nature 2001; 410: 97-101.

19. Sanna-Cherchi S, Kiryluk K, Burgess 

KE, et al. Copy-number disorders are a 

The New England Journal of Medicine 

Downloaded from nejm.org at SBBL on January 25, 2017. For personal use only. No other uses without permission. 

 Copyright © 2017 Massachusetts Medical Society. All rights reserved. 



n engl j med   nejm.org 13

Genetic Driver of Kidney Defects in the DiGeorge Syndrome

common cause of congenital kidney mal-

formations. Am J Hum Genet 2012; 91: 

987-97.

20. Verbitsky M, Sanna-Cherchi S, Fasel 

DA, et al. Genomic imbalances in pediat-

ric patients with chronic kidney disease.  

J Clin Invest 2015; 125: 2171-8.

21. Westland R, Verbitsky M, Vukojevic K, 

et al. Copy number variation analysis 

identifies novel CAKUT candidate genes 

in children with a solitary functioning 

kidney. Kidney Int 2015; 88: 1402-10.

22. Sanna-Cherchi S, Sampogna RV, Pa-

peta N, et al. Mutations in DSTYK and 

dominant urinary tract malformations.  

N Engl J Med 2013; 369: 621-9.

23. Westland R, Bodria M, Carrea A, et al. 

Phenotypic expansion of DGKE-associat-

ed diseases. J Am Soc Nephrol 2014; 25: 

1408-14.

24. Choi M, Scholl UI, Ji W, et al. Genetic 

diagnosis by whole exome capture and 

massively parallel DNA sequencing. Proc 

Natl Acad Sci U S A 2009; 106: 19096-101.

25. Halbritter J, Diaz K, Chaki M, et al. 

High-throughput mutation analysis in pa-

tients with a nephronophthisis-associated 

ciliopathy applying multiplexed barcoded 

array-based PCR amplification and next-

generation sequencing. J Med Genet 2012; 

49: 756-67.

26. Halbritter J, Porath JD, Diaz KA, et al. 

Identification of 99 novel mutations in a 

worldwide cohort of 1,056 patients with a 

nephronophthisis-related ciliopathy. Hum 

Genet 2013; 132: 865-84.

27. Mefford HC, Clauin S, Sharp AJ, et al. 

Recurrent reciprocal genomic rearrange-

ments of 17q12 are associated with renal 

disease, diabetes, and epilepsy. Am J Hum 

Genet 2007; 81: 1057-69.

28. Chapman DL, Garvey N, Hancock S, 

et al. Expression of the T-box family 

genes, Tbx1-Tbx5, during early mouse de-

velopment. Dev Dyn 1996; 206: 379-90.

29. Golzio C, Willer J, Talkowski ME, et 

al. KCTD13 is a major driver of mirrored 

neuroanatomical phenotypes of the 16p11.2 

copy number variant. Nature 2012; 485: 

363-7.

30. Carvalho CM, Vasanth S, Shinawi M, 

et al. Dosage changes of a segment at 

17p13.1 lead to intellectual disability and 

microcephaly as a result of complex ge-

netic interaction of multiple genes. Am J 

Hum Genet 2014; 95: 565-78.

31. Dauber A, Golzio C, Guenot C, et al. 

SCRIB and PUF60 are primary drivers of 

the multisystemic phenotypes of the 

8q24.3 copy-number variant. Am J Hum 

Genet 2013; 93: 798-811.

32. Costantini F, Kopan R. Patterning a 

complex organ: branching morphogene-

sis and nephron segmentation in kidney 

development. Dev Cell 2010; 18: 698-712.

33. Schuchardt A, D’Agati V, Larsson-

Blomberg L, Costantini F, Pachnis V. De-

fects in the kidney and enteric nervous 

system of mice lacking the tyrosine ki-

nase receptor Ret. Nature 1994; 367: 380-3.

34. Chatterjee R, Ramos E, Hoffman M, 

et al. Traditional and targeted exome se-

quencing reveals common, rare and novel 

functional deleterious variants in RET-

signaling complex in a cohort of living US 

patients with urinary tract malforma-

tions. Hum Genet 2012; 131: 1725-38.

35. Hwang DY, Dworschak GC, Kohl S, et 

al. Mutations in 12 known dominant dis-

ease-causing genes clarify many congeni-

tal anomalies of the kidney and urinary 

tract. Kidney Int 2014; 85: 1429-33.

36. de Pontual L, Zaghloul NA, Thomas S, 

et al. Epistasis between RET and BBS mu-

tations modulates enteric innervation and 

causes syndromic Hirschsprung disease. 

Proc Natl Acad Sci U S A 2009; 106: 13921-6.

37. Vasilyev A, Liu Y, Mudumana S, et al. 

Collective cell migration drives morpho-

genesis of the kidney nephron. PLoS Biol 

2009; 7(1): e9.

38. Borck G, Hög F, Dentici ML, et al. 

BRF1 mutations alter RNA polymerase III-

dependent transcription and cause neuro-

developmental anomalies. Genome Res 

2015; 25: 155-66.

39. Huang N, Lee I, Marcotte EM, Hurles 

ME. Characterising and predicting haplo-

insufficiency in the human genome. PLoS 

Genet 2010; 6(10): e1001154.

40. Kondo S, Tokunaga F, Kario K, Mat-

suo T, Koide T. Molecular and cellular 

basis for type I heparin cofactor II defi-

ciency (heparin cofactor II Awaji). Blood 

1996; 87: 1006-12.

41. Rump P, de Leeuw N, van Essen AJ, et 

al. Central 22q11.2 deletions. Am J Med 

Genet A 2014; 164A: 2707-23.

42. Besseau-Ayasse J, Violle-Poirsier C, 

Bazin A, et al. A French collaborative sur-

vey of 272 fetuses with 22q11.2 deletion: 

ultrasound findings, fetal autopsies and 

pregnancy outcomes. Prenat Diagn 2014; 

34: 424-30.

43. Moon AM, Guris DL, Seo JH, et al. 

Crkl deficiency disrupts Fgf8 signaling in 

a mouse model of 22q11 deletion syn-

dromes. Dev Cell 2006; 10: 71-80.

44. Bates CM. Role of fibroblast growth 

factor receptor signaling in kidney devel-

opment. Am J Physiol Renal Physiol 2011; 

301: F245-F251.

45. Schedl A. Renal abnormalities and 

their developmental origin. Nat Rev Gen-

et 2007; 8: 791-802.

46. Guris DL, Fantes J, Tara D, Druker BJ, 

Imamoto A. Mice lacking the homologue 

of the human 22q11.2 gene CRKL pheno-

copy neurocristopathies of DiGeorge syn-

drome. Nat Genet 2001; 27: 293-8.

47. Racedo SE, McDonald-McGinn DM, 

Chung JH, et al. Mouse and human CRKL 

is dosage sensitive for cardiac outflow 

tract formation. Am J Hum Genet 2015; 

96: 235-44.

48. Migliavacca E, Golzio C, Männik K, et 

al. A potential contributory role for ciliary 

dysfunction in the 16p11.2 600 kb BP4-

BP5 pathology. Am J Hum Genet 2015; 96: 

784-96.

Copyright © 2017 Massachusetts Medical Society.

The New England Journal of Medicine 

Downloaded from nejm.org at SBBL on January 25, 2017. For personal use only. No other uses without permission. 

 Copyright © 2017 Massachusetts Medical Society. All rights reserved. 


