48 research outputs found

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Get PDF
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Novel F-releasing Composite with Improved Mechanical Properties

    No full text
    In recent years, the authors have been developing novel fluoride-releasing dental composites containing ternary zirconium fluoride chelates. The aim of this study was to improve the physical and mechanical properties of these composites by improving the formulation of the monomers and photoinitiators. The hypothesis was that reduction of hydrophilic monomers and improvement of the photoinitiators could reduce water sorption and significantly increase the mechanical properties of the composite. The degree of conversion of the composites containing different compositions of photoinitiators was studied by Fourier transform near-infrared spectroscopy (FT-NIR). Ten experimental composites containing different compositions of ethoxylated bisphenol-A dimethacrylate (EBPADMA), 1,6-hexanediol dimethacrylate (HDDMA), triethylene glycol dimethacrylate (TEGDMA), and 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]-propane (BisGMA) were tested for flexural strength, viscosity, and water sorption. The experimental composite containing 20% synthesized fluoride-releasing monomer, 30% BisGMA, 30% EBPADMA, and 20% HDDMA showed significantly higher fluoride release and recharge, but physical and mechanical properties similar to those of the control composite containing 40% BisGMA, 40% EBPADMA, and 20% HDDMA

    Preventive home care of frail older people: a review of recent case management studies.

    Get PDF
    Preventive actions targeting community-dwelling frail older people will be increasingly important with the growing number of very old and thereby also frail older people. This study aimed to explore and summarize the empirical literature on recent studies of case/care management interventions for community-dwelling frail older people and especially with regard to the content of the interventions and the nurse's role and outcome of it. Very few of the interventions took either a preventive or a rehabilitative approach using psycho-educative interventions focusing, for instance, on self-care activities, risk prevention, health complaints management or how to preserve or strengthen social activities, community involvement and functional ability. Moreover, it was striking that very few included a family-oriented approach also including support and education for informal caregivers. Thus it seems that the content of case/care management needs to be expanded and more influenced by a salutogenic health care perspective. Targeting frail older people seemed to benefit from a standardized two-stage strategy for inclusion and for planning the interventions. A comprehensive geriatric assessment seemed useful as a base. Nurses, preferably trained in gerontological practice, have a key role in case/care management for frail older people. This approach calls for developing the content of case/care management so that it involves a more salutogenic, rehabilitative and family-oriented approach. To this end it may be useful for nurses to strengthen their psychosocial skills or develop close collaboration with social workers. The outcome measures examined in this study represented one of three perspectives: the consumer's perspective, the perspective of health care consumption or the recipient's health and functional ability. Perhaps effects would be expected in all three areas and thus these should be included in evaluative studies in addition to measures for family and/or informal caregiver's strain and satisfaction
    corecore