1,126 research outputs found

    Chiral Symmetry restoration in the massive Thirring model at finite T and Ό\mu: Dimensional reduction and the Coulomb gas

    Get PDF
    We show that in certain limits the (1+1)-dimensional massive Thirring model at finite temperature TT is equivalent to a one-dimensional Coulomb gas of charged particles at the same TT. This equivalence is then used to explore the phase structure of the massive Thirring model. For strong coupling and T>>mT>>m (the fermion mass) the system is shown to behave as a free gas of "molecules" (charge pairs in the Coulomb gas terminology) made of pairs of chiral condensates. This binding of chiral condensates is responsible for the restoration of chiral symmetry as T→∞T\to\infty. In addition, when a fermion chemical potential Ό≠0\mu\neq 0 is included, the analogy with a Coulomb gas still holds with ÎŒ\mu playing the role of a purely imaginary external electric field. For small TT and ÎŒ\mu we find a typical massive Fermi gas behaviour for the fermion density, whereas for large ÎŒ\mu it shows chiral restoration by means of a vanishing effective fermion mass. Some similarities with the chiral properties of low-energy QCD at finite TT and baryon chemical potential are discussed.Comment: 28 pages, 6 figures, better resolution figures are available upon reques

    Effect of O2+, H2+ O 2+, and N2+ O2 + ion-beam irradiation on the field emission properties of carbon nanotubes

    Get PDF
    The effect of O2+, H2+ O 2+, and N2+ O2 + ion-beam irradiation of carbon nanotubes (CNTs) films on the chemical and electronic properties of the material is reported. The CNTs were grown by the chemical vapor deposition technique (CVD) on silicon TiN coated substrates previously decorated with Ni particles. The Ni decoration and TiN coating were successively deposited by ion-beam assisted deposition (IBAD) and afterwards the nanotubes were grown. The whole deposition procedure was performed in situ as well as the study of the effect of ion-beam irradiation on the CNTs by x-ray photoelectron spectroscopy (XPS). Raman scattering, field-effect emission gun scanning electron microscopy (FEG-SEM), and field emission (FE) measurements were performed ex situ. The experimental data show that: (a) the presence of either H2+ or N2 + ions in the irradiation beam determines the oxygen concentration remaining in the samples as well as the studied structural characteristics; (b) due to the experimental conditions used in the study, no morphological changes have been observed after irradiation of the CNTs; (c) the FE experiments indicate that the electron emission from the CNTs follows the Fowler-Nordheim model, and it is dependent on the oxygen concentration remaining in the samples; and (d) in association with FE results, the XPS data suggest that the formation of terminal quinone groups decreases the CNTs work function of the material. © 2011 American Institute of Physics.Fil:Escobar, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Goyanes, S.N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Candal, R.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Alvarez, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Prospects for observations of high-energy cosmic tau neutrinos

    Get PDF
    We study prospects for the observations of high-energy cosmic tau neutrinos (E \geq 10^6 GeV) originating from proton acceleration in the cores of active galactic nuclei. We consider the possibility that vacuum flavor neutrino oscillations induce a tau to muon neutrino flux ratio greatly exceeding the rather small value expected from intrinsic production. The criterias and event rates for under water/ice light Cerenkov neutrino telescopes are given by considering the possible detection of downgoing high-energy cosmic tau neutrinos through characteristic double shower events.Comment: 10 pages, Revtex, 3 figures included with eps

    Two-dimensional non-commutative Yang-Mills theory: coherent effects in open Wilson line correlators

    Full text link
    A perturbative calculation of the correlator of three parallel open Wilson lines is performed for the U(N) theory in two non-commutative space-time dimensions. In the large-N planar limit, the perturbative series is fully resummed and asymptotically leads to an exponential increase of the correlator with the lengths of the lines, in spite of an interference effect between lines with the same orientation. This result generalizes a similar increase occurring in the two-line correlator and is likely to persist when more lines are considered provided they share the same direction.Comment: 22 pages, 1 figure, typeset in JHEP styl

    Prospects for radio detection of ultra-high energy cosmic rays and neutrinos

    Get PDF
    The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970's. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off. (abridged)Comment: latex, 26 pages, 17 figures, to appear in: "Science with the Square Kilometer Array," eds. C. Carilli and S. Rawlings, New Astronomy Reviews, (Elsevier: Amsterdam

    Resummation of the Divergent Perturbation Series for a Hydrogen Atom in an Electric Field

    Get PDF
    We consider the resummation of the perturbation series describing the energy displacement of a hydrogenic bound state in an electric field (known as the Stark effect or the LoSurdo-Stark effect), which constitutes a divergent formal power series in the electric field strength. The perturbation series exhibits a rich singularity structure in the Borel plane. Resummation methods are presented which appear to lead to consistent results even in problematic cases where isolated singularities or branch cuts are present on the positive and negative real axis in the Borel plane. Two resummation prescriptions are compared: (i) a variant of the Borel-Pade resummation method, with an additional improvement due to utilization of the leading renormalon poles (for a comprehensive discussion of renormalons see [M. Beneke, Phys. Rep. vol. 317, p. 1 (1999)]), and (ii) a contour-improved combination of the Borel method with an analytic continuation by conformal mapping, and Pade approximations in the conformal variable. The singularity structure in the case of the LoSurdo-Stark effect in the complex Borel plane is shown to be similar to (divergent) perturbative expansions in quantum chromodynamics.Comment: 14 pages, RevTeX, 3 tables, 1 figure; numerical accuracy of results enhanced; one section and one appendix added and some minor changes and additions; to appear in phys. rev.

    Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight

    Get PDF
    The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. For 14 of these events, this radiation was reflected from the ice. The dominant contribution to the radiation from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. This radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of 36km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations. In addition, we find that the Monte Carlo simulation of the ANITA data set is in agreement with the total number of observed events and with the properties of those events.Comment: Added more explanation of the experimental setup and textual improvement

    Slow dynamics in the 3--D gonihedric model

    Full text link
    We study dynamical aspects of three--dimensional gonihedric spins by using Monte--Carlo methods. The interest of this family of models (parametrized by one self-avoidance parameter Îș\kappa) lies in their capability to show remarkably slow dynamics and seemingly glassy behaviour below a certain temperature TgT_g without the need of introducing disorder of any kind. We consider first a hamiltonian that takes into account only a four--spin term (Îș=0\kappa=0), where a first order phase transition is well established. By studying the relaxation properties at low temperatures we confirm that the model exhibits two distinct regimes. For Tg<T<TcT_g< T < T_c, with long lived metastability and a supercooled phase, the approach to equilibrium is well described by a stretched exponential. For T<TgT<T_g the dynamics appears to be logarithmic. We provide an accurate determination of TgT_g. We also determine the evolution of particularly long lived configurations. Next, we consider the case Îș=1\kappa=1, where the plaquette term is absent and the gonihedric action consists in a ferromagnetic Ising with fine-tuned next-to-nearest neighbour interactions. This model exhibits a second order phase transition. The consideration of the relaxation time for configurations in the cold phase reveals the presence of slow dynamics and glassy behaviour for any T<TcT< T_c. Type II aging features are exhibited by this model.Comment: 13 pages, 12 figure

    On Black Hole Detection with the OWL/Airwatch Telescope

    Full text link
    In scenarios with large extra dimensions and TeV scale gravity ultrahigh energy neutrinos produce black holes in their interactions with the nucleons. We show that ICECUBE and OWL may observe large number of black hole events and provide valuable information about the fundamental Planck scale and the number of extra dimensions. OWL is especially well suited to observe black hole events produced by neutrinos from the interactions of cosmic rays with the 3 K background radiation. Depending on the parameters of the scenario of large extra dimensions and on the flux model, as many as 28 events per year are expected for a Planck scale of 3 TeV.Comment: 8 pages, including 7 color figures, three figure captions corrected, minor changes for clarification, one reference adde

    Emergent Gravity from Noncommutative Gauge Theory

    Full text link
    We show that the matrix-model action for noncommutative U(n) gauge theory actually describes SU(n) gauge theory coupled to gravity. This is elaborated in the 4-dimensional case. The SU(n) gauge fields as well as additional scalar fields couple to an effective metric G_{ab}, which is determined by a dynamical Poisson structure. The emergent gravity is intimately related to noncommutativity, encoding those degrees of freedom which are usually interpreted as U(1) gauge fields. This leads to a class of metrics which contains the physical degrees of freedom of gravitational waves, and allows to recover e.g. the Newtonian limit with arbitrary mass distribution. It also suggests a consistent picture of UV/IR mixing in terms of an induced gravity action. This should provide a suitable framework for quantizing gravity.Comment: 28 pages + 11 pages appendix. V2: references and discussion added. V3: minor correctio
    • 

    corecore