22 research outputs found

    Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    Get PDF
    It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey. The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 muG) and ordered (3 muG) magnetic field strengths, as well as degree of field order (0.46), which is similar to those observed in spirals, suggest that tidally generated magnetized gas flows can further enhance dynamo action in the object. NGC 2976 is apparently a good candidate for the efficient magnetization of its neighbourhood. It is able to provide an ordered (perhaps also regular) magnetic field into the intergalactic space up to a distance of about 5 kpc. Tidal interactions (and possibly also ram pressure) can lead to the formation of unusual magnetic field morphologies (like polarized ridges) in galaxies out of the star-forming disks, which do not follow any observed component of the interstellar medium (ISM), as observed in NGC 2976. These galaxies are able to provide ordered magnetic fields far out of their main disks.Comment: 16 page

    The magnetic fields of large Virgo cluster spirals: Paper II

    Get PDF
    The Virgo cluster of galaxies provides excellent conditions for studying interactions of galaxies with the cluster environment. Both the high-velocity tidal interactions and effects of ram pressure stripping by the intracluster gas can be investigated in detail. We extend our systematic search for possible anomalies in the magnetic field structures of Virgo cluster spirals in order to characterize a variety of effects and attribute them to different disturbing agents. Six angularly large Virgo cluster spiral galaxies (NGC4192, NGC4302, NGC4303, NGC4321, NGC4388, and NGC4535) were targets of a sensitive total power and polarization study using the 100-m radio telescope in Effelsberg at 4.85GHz and 8.35GHz (except for NGC4388 observed only at 4.85GHz, and NGC4535 observed only at 8.35GHz). Magnetic field structures distorted to various extent are found in all galaxies. Three galaxies (NGC4302, NGC4303, and NGC4321) show some signs of possible tidal interactions, while NGC4388 and NGC4535 have very likely experienced strong ram-pressure and shearing effects, respectively, visible as distortions and asymmetries of polarized intensity distributions. As in our previous study, even strongly perturbed galaxies closely follow the radio-far-infrared correlation. In NGC4303 and NGC4321, we observe symmetric spiral patterns of the magnetic field and in NGC4535 an asymmetric pattern. Magnetic fields allow us to trace even weak interactions that are difficult to detect with other observations. Our results show that the degree of distortions of a galaxy is not a simple function of the distance to the cluster center but reflects also the history of its interactions. The angle between the velocity vector and the rotation vector of a galaxy may be a general parameter that describes the level of distortions of galactic magnetic fields.Comment: 12 pages, 18 figures, 2 tables. Accepted for publication in Astronomy and Astrophysic

    The Principle of Valence Bond Amplitude Maximization in Cuprates: How it breeds Superconductivity, Spin and Charge Orders

    Full text link
    A simple microscopic principle of `Valence bond (nearest neighbor singlet) amplitude maximization '(VBAM) is shown to be present in undoped and optimally doped cuprates and unify the very different orderings such as antiferromagnetism in the Mott insulator and the robust superconductivity accompanied by an enhanced charge and stripe correlations in the optimally doped cuprates. VBAM is nearly synonymous with the energy minimization principle. It is implicit in the RVB theory and thereby makes the predictions of RVB mean field theory of superconductivity qualitatively correct.Comment: 4 pages, RevTe

    The diffuse radio emission around NGC 5580 and NGC 5588

    Get PDF
    The galaxy pair NGC 5580 and NGC 5588 is part of a loose group of galaxies. They are surrounded by steep-spectrum, extended radio emission which was previously suggested to be a down-scaled example of Mpc-size radio haloes present in galaxies clusters. We present a multifrequency study of the radio emission aimed to clarify its nature. The source has been observed with the Giant Metrewave Radio Telescope at 235, 325 and 610 MHz and the images obtained were combined with archival data to cover the frequency range 150-1400 MHz. The new observations revealed the presence of a second, fainter lobe on the south-east of NGC 5580. The spectral index study of the source shows a flattening of the spectrum (which implies a younger particle population) close to the two galaxies. We argue that the extended radio emission is the remnant of a past activity cycle of the active galactic nucleus present in NGC 5580 and therefore a notable example of a dying radio galaxy located outside dense environments. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

    Magnetic field evolution in interacting galaxies

    Get PDF
    Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. We selected 16 systems of interacting galaxies and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15muG) as interaction advances, then it increases up to 2x, peaks at the nuclear coalescence (25muG), and decreases again, down to 5-6muG, for the post-merger remnants. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. The process of strong gravitational interactions can efficiently magnetize the merger's surroundings, having a similar magnetizing effect on intergalactic medium as supernova explosions or galactic winds. If interacting galaxies generate some ultra-high energy cosmic rays (UHECRs), the disk or magnetized outflows can deflect them (up to 23 degrees), and make an association of the observed UHECRs with the sites of their origin very uncertain.Comment: 17 pages, 16 figures, 5 tables. Published in Astronomy and Astrophysics, minor changes to v
    corecore