129 research outputs found
Classical Effects of Laser Pulse Duration on Strong-field Double Ionization
We use classical electron ensembles and the aligned-electron approximation to
examine the effect of laser pulse duration on the dynamics of strong-field
double ionization. We cover the range of intensities
for the laser wavelength 780 nm. The classical scenario suggests that the
highest rate of recollision occurs early in the pulse and promotes double
ionization production in few-cycle pulses. In addition, the purely classical
ensemble calculation predicts an exponentially decreasing recollision rate with
each subsequent half cycle. We confirm the exponential behavior by trajectory
back-analysis
Accelerated recent warming and temperature variability over the past eight centuries in the central Asian Altai from blue intensity in tree rings
Funding: National Science Foundation (NSF). Grant Number: 1737788 and NOAA Climate and Global Change Postdoc Fellow Program. Grant Number: NA18NWS4620043B.Warming in Central Asia has been accelerating over the past three decades and is expected to intensify through the end of this century. Here, we develop a summer temperature reconstruction for western Mongolia spanning eight centuries (1269–2004 C.E.) using delta blue intensity measurements from annual rings of Siberian larch. A significant cooling response is observed in the year following major volcanic events and up to five years post-eruption. Observed summer temperatures since the 1990s are the warmest over the past eight centuries, an observation that is also well captured in Coupled Model Intercomparison Project (CMIP5) climate model simulations. Projections for summer temperature relative to observations suggest further warming of between ∼3°C and 6°C by the end of the century (2075–2099 cf. 1950–2004) under the representative concentration pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) emission scenarios. We conclude that projected future warming lies beyond the range of natural climate variability for the past millennium as estimated by our reconstruction.Publisher PDFPeer reviewe
Correlated multi-electron dynamics in ultrafast laser pulse - atom interactions
We present the results of the detailed experimental study of multiple
ionization of Ne and Ar by 25 and 7 fs laser pulses. For Ne the highly
correlated "instantaneous" emission of up to four electrons is triggered by a
recollisional electron impact, whereas in multiple ionization of Ar different
mechanisms, involving field ionization steps and recollision-induced
excitations, play a major role. Using few-cycle pulses we are able to suppress
those processes that occur on time scales longer than one laser cycle.Comment: 9 pages, 4 figure
Recommended from our members
Three centuries of shifting hydroclimatic regimes across the Mongolian Breadbasket
In its continuing move toward resource independence, Mongolia has recently entered a new agricultural era. Large crop fields and center-pivot irrigation have been established in the last 10 years across Mongolia's "Breadbasket": the Bulgan, Selenge and Tov aimags of northcentral Mongolia. Since meteorological records are typically short and spatially diffuse, little is known about the frequency and scale of past droughts in this region. We use six chronologies from the eastern portion of the breadbasket region to reconstruct streamflow of the Yeruu River. These chronologies accounted for 60.8% of May–September streamflow from 1959 to 1987 and 74.1% from 1988 to 2001. All split, calibration-verification statistics were positive, indicating significant model reconstruction. Reconstructed Yeruu River streamflow indicates the 20th century to be wetter than the two prior centuries. When comparing the new reconstruction to an earlier reconstruction of Selenge River streamflow, representing the western portion of the breadbasket region, both records document more pluvial events of greater intensity during 20th century versus prior centuries and indicate that the recent decade of drought that lead to greater aridity across the landscape is not unusual in the context of the last 300 years. Most interestingly, variability analyses indicate that the larger river basin in the western breadbasket (the Selenge basin) experiences greater swings in hydroclimate at multi-decadal to centennial time scales while the smaller basin in the eastern portion of the breadbasket (the Yeruu basin) is more stable. From this comparison, there would be less risk in agricultural productivity in the eastern breadbasket region, although the western breadbasket region can potentially be enormously productive for decades at a time before becoming quite dry for an equally long period of time. These results indicate that farmers and water managers need to prepare for both pluvial conditions like those in the late-1700s, and drier conditions like those during the early and mid-1800s. Recent studies have indicated that cultures with plentiful resources are more vulnerable when these resources become diminished. Thus, the instrumental records of the 20th century should not be used as a model of moisture availability. Most importantly, the geographic mismatch between precipitation, infrastructure, and water demand could turn out to be particularly acute for countries like Mongolia, especially as these patterns can switch in space through time
Properties of 42 Solar-type Kepler Targets from the Asteroseismic Modeling Portal
Recently the number of main-sequence and subgiant stars exhibiting solar-like
oscillations that are resolved into individual mode frequencies has increased
dramatically. While only a few such data sets were available for detailed
modeling just a decade ago, the Kepler mission has produced suitable
observations for hundreds of new targets. This rapid expansion in observational
capacity has been accompanied by a shift in analysis and modeling strategies to
yield uniform sets of derived stellar properties more quickly and easily. We
use previously published asteroseismic and spectroscopic data sets to provide a
uniform analysis of 42 solar-type Kepler targets from the Asteroseismic
Modeling Portal (AMP). We find that fitting the individual frequencies
typically doubles the precision of the asteroseismic radius, mass and age
compared to grid-based modeling of the global oscillation properties, and
improves the precision of the radius and mass by about a factor of three over
empirical scaling relations. We demonstrate the utility of the derived
properties with several applications.Comment: 12 emulateapj pages, 9 figures, 1 online-only extended figure, 1
table, ApJS accepted (typo corrected in Eq.8
Asteroseismic fundamental properties of solar-type stars observed by the NASA Kepler Mission
We use asteroseismic data obtained by the NASA Kepler Mission to estimate the
fundamental properties of more than 500 main-sequence and sub-giant stars. Data
obtained during the first 10 months of Kepler science operations were used for
this work, when these solar-type targets were observed for one month each in a
survey mode. Stellar properties have been estimated using two global
asteroseismic parameters and complementary photometric and spectroscopic data.
Homogeneous sets of effective temperatures were available for the entire
ensemble from complementary photometry; spectroscopic estimates of T_eff and
[Fe/H] were available from a homogeneous analysis of ground-based data on a
subset of 87 stars. [Abbreviated version... see paper for full abstract.]Comment: Accepted for publication in ApJS; 90 pages, 22 figures, 6 tables.
Units on rho in tables now listed correctly as rho(Sun
Asteroseismology of Solar-type Stars with Kepler I: Data Analysis
We report on the first asteroseismic analysis of solar-type stars observed by
Kepler. Observations of three G-type stars, made at one-minute cadence during
the first 33.5d of science operations, reveal high signal-to-noise solar-like
oscillation spectra in all three stars: About 20 modes of oscillation can
clearly be distinguished in each star. We discuss the appearance of the
oscillation spectra, including the presence of a possible signature of faculae,
and the presence of mixed modes in one of the three stars.Comment: 5 pages, 4 figure, submitted to Astronomische Nachrichte
An integrated ultra-high vacuum apparatus for growth and in situ characterization of complex materials
Here we present an integrated ultra-high vacuum apparatus \u2013 named MBE-Cluster \u2013 dedicated to the growth
and in situ structural, spectroscopic and magnetic characterization of complex materials. Molecular Beam
Epitaxy (MBE) growth of metal oxides, e.g. manganites, and deposition of patterned metallic layers can be
fabricated and in situ characterized by reflection high-energy electron diffraction (RHEED), low-energy
electron diffraction (LEED) - Auger Electron Spectroscopy, X-ray photoemission spectroscopy (PES) and
azimuthal longitudinal magneto-optic Kerr effect (MOKE). The temperature can be controlled in the range
from 5 to 580 K, with the possibility of application of magnetic fields H up to \ub17 kOe and electric fields E for
voltages up to \ub1500 V. The MBE-Cluster operates for in-house research as well as user facility in combination
with the APE beamlines at Sincrotrone-Trieste and the high harmonic generator (HHG) facility for timeresolved
spectroscopy
MOST photometry of the enigmatic PMS pulsator HD 142666
We present precise photometry of the pulsating Herbig Ae star HD 142666
obtained in two consecutive years with the MOST (Microvariability & Oscilations
of STars) satellite.
Previously, only a single pulsation period was known for HD 142666. The MOST
photometry reveals that HD 142666 is multi-periodic. However, the unique
identification of pulsation frequencies is complicated by the presence of
irregular variability caused by the star's circumstellar dust disk. The two
light curves obtained with MOST in 2006 and 2007 provided data of unprecedented
quality to study the pulsations in HD 142666 and also to monitor the
circumstellar variability.
We attribute 12 frequencies to pulsation. Model fits to the three frequencies
with the highest amplitudes lie well outside the uncertainty box for the star's
position in the HR diagram based on published values.
The models suggest that either (1) the published estimate of the luminosity
of HD 142666, based on a relation between circumstellar disk radius and stellar
luminosity, is too high and/or (2) additional physics such as mass accretion
may be needed in our models to accurately fit both the observed frequencies and
HD 142666's position in the HR diagram.Comment: 10 pages, 11 figures, accepted for publication by Astronomy and
Astrophysic
- …