129 research outputs found

    Classical Effects of Laser Pulse Duration on Strong-field Double Ionization

    Full text link
    We use classical electron ensembles and the aligned-electron approximation to examine the effect of laser pulse duration on the dynamics of strong-field double ionization. We cover the range of intensities 1014−1016W/cm210^{14}-10^{16} W/cm^2 for the laser wavelength 780 nm. The classical scenario suggests that the highest rate of recollision occurs early in the pulse and promotes double ionization production in few-cycle pulses. In addition, the purely classical ensemble calculation predicts an exponentially decreasing recollision rate with each subsequent half cycle. We confirm the exponential behavior by trajectory back-analysis

    Accelerated recent warming and temperature variability over the past eight centuries in the central Asian Altai from blue intensity in tree rings

    Get PDF
    Funding: National Science Foundation (NSF). Grant Number: 1737788 and NOAA Climate and Global Change Postdoc Fellow Program. Grant Number: NA18NWS4620043B.Warming in Central Asia has been accelerating over the past three decades and is expected to intensify through the end of this century. Here, we develop a summer temperature reconstruction for western Mongolia spanning eight centuries (1269–2004 C.E.) using delta blue intensity measurements from annual rings of Siberian larch. A significant cooling response is observed in the year following major volcanic events and up to five years post-eruption. Observed summer temperatures since the 1990s are the warmest over the past eight centuries, an observation that is also well captured in Coupled Model Intercomparison Project (CMIP5) climate model simulations. Projections for summer temperature relative to observations suggest further warming of between ∼3°C and 6°C by the end of the century (2075–2099 cf. 1950–2004) under the representative concentration pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) emission scenarios. We conclude that projected future warming lies beyond the range of natural climate variability for the past millennium as estimated by our reconstruction.Publisher PDFPeer reviewe

    Correlated multi-electron dynamics in ultrafast laser pulse - atom interactions

    Full text link
    We present the results of the detailed experimental study of multiple ionization of Ne and Ar by 25 and 7 fs laser pulses. For Ne the highly correlated "instantaneous" emission of up to four electrons is triggered by a recollisional electron impact, whereas in multiple ionization of Ar different mechanisms, involving field ionization steps and recollision-induced excitations, play a major role. Using few-cycle pulses we are able to suppress those processes that occur on time scales longer than one laser cycle.Comment: 9 pages, 4 figure

    Properties of 42 Solar-type Kepler Targets from the Asteroseismic Modeling Portal

    Full text link
    Recently the number of main-sequence and subgiant stars exhibiting solar-like oscillations that are resolved into individual mode frequencies has increased dramatically. While only a few such data sets were available for detailed modeling just a decade ago, the Kepler mission has produced suitable observations for hundreds of new targets. This rapid expansion in observational capacity has been accompanied by a shift in analysis and modeling strategies to yield uniform sets of derived stellar properties more quickly and easily. We use previously published asteroseismic and spectroscopic data sets to provide a uniform analysis of 42 solar-type Kepler targets from the Asteroseismic Modeling Portal (AMP). We find that fitting the individual frequencies typically doubles the precision of the asteroseismic radius, mass and age compared to grid-based modeling of the global oscillation properties, and improves the precision of the radius and mass by about a factor of three over empirical scaling relations. We demonstrate the utility of the derived properties with several applications.Comment: 12 emulateapj pages, 9 figures, 1 online-only extended figure, 1 table, ApJS accepted (typo corrected in Eq.8

    Asteroseismic fundamental properties of solar-type stars observed by the NASA Kepler Mission

    Get PDF
    We use asteroseismic data obtained by the NASA Kepler Mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars. Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in a survey mode. Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data. Homogeneous sets of effective temperatures were available for the entire ensemble from complementary photometry; spectroscopic estimates of T_eff and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars. [Abbreviated version... see paper for full abstract.]Comment: Accepted for publication in ApJS; 90 pages, 22 figures, 6 tables. Units on rho in tables now listed correctly as rho(Sun

    Asteroseismology of Solar-type Stars with Kepler I: Data Analysis

    Full text link
    We report on the first asteroseismic analysis of solar-type stars observed by Kepler. Observations of three G-type stars, made at one-minute cadence during the first 33.5d of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: About 20 modes of oscillation can clearly be distinguished in each star. We discuss the appearance of the oscillation spectra, including the presence of a possible signature of faculae, and the presence of mixed modes in one of the three stars.Comment: 5 pages, 4 figure, submitted to Astronomische Nachrichte

    An integrated ultra-high vacuum apparatus for growth and in situ characterization of complex materials

    Get PDF
    Here we present an integrated ultra-high vacuum apparatus \u2013 named MBE-Cluster \u2013 dedicated to the growth and in situ structural, spectroscopic and magnetic characterization of complex materials. Molecular Beam Epitaxy (MBE) growth of metal oxides, e.g. manganites, and deposition of patterned metallic layers can be fabricated and in situ characterized by reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED) - Auger Electron Spectroscopy, X-ray photoemission spectroscopy (PES) and azimuthal longitudinal magneto-optic Kerr effect (MOKE). The temperature can be controlled in the range from 5 to 580 K, with the possibility of application of magnetic fields H up to \ub17 kOe and electric fields E for voltages up to \ub1500 V. The MBE-Cluster operates for in-house research as well as user facility in combination with the APE beamlines at Sincrotrone-Trieste and the high harmonic generator (HHG) facility for timeresolved spectroscopy

    MOST photometry of the enigmatic PMS pulsator HD 142666

    Full text link
    We present precise photometry of the pulsating Herbig Ae star HD 142666 obtained in two consecutive years with the MOST (Microvariability & Oscilations of STars) satellite. Previously, only a single pulsation period was known for HD 142666. The MOST photometry reveals that HD 142666 is multi-periodic. However, the unique identification of pulsation frequencies is complicated by the presence of irregular variability caused by the star's circumstellar dust disk. The two light curves obtained with MOST in 2006 and 2007 provided data of unprecedented quality to study the pulsations in HD 142666 and also to monitor the circumstellar variability. We attribute 12 frequencies to pulsation. Model fits to the three frequencies with the highest amplitudes lie well outside the uncertainty box for the star's position in the HR diagram based on published values. The models suggest that either (1) the published estimate of the luminosity of HD 142666, based on a relation between circumstellar disk radius and stellar luminosity, is too high and/or (2) additional physics such as mass accretion may be needed in our models to accurately fit both the observed frequencies and HD 142666's position in the HR diagram.Comment: 10 pages, 11 figures, accepted for publication by Astronomy and Astrophysic
    • …
    corecore