511 research outputs found

    Phase Dependent Spectroscopy of Mira Variable Stars

    Get PDF
    Spectroscopic measurements of Mira variable stars, as a function of phase, probe the stellar atmospheres and underlying pulsation mechanisms. For example, measuring variations in TiO, VO, and ZrO with phase can be used to help determine whether these molecular species are produced in an extended region above the layers where Balmer line emission occurs or below this shocked region. Using the same methods, the Balmer-line increment, where the strongest Balmer line at phase zero is H-delta and not H-alpha can be measured and explanations tested, along with another peculiarity, the absence of the H-epsilon line in the spectra of Miras when other Balmer lines are strong. We present new spectra covering the spectral range from 6200 Angstroms to 9000 Angstroms of 20 Mira variables. A relationship between variations in the CaII IR triplet and H-alpha as a function of phase support the hypothesis that H-epsilon's observational characteristics result from an interaction of H-epsilon photons with the CaII H line. New periods and epochs of variability are also presented for each star

    CO2 increases 14C-primary production in an Arctic plankton community

    Get PDF
    Responses to ocean acidification in plankton communities were studied during a CO2-enrichment experiment in the Arctic Ocean, accomplished from June to July 2010 in Kongsfjorden, Svalbard (78°56′ 2′′ N, 11°53′ 6′′ E). Enclosed in 9 mesocosms (volume: 43.9–47.6 m3), plankton was exposed to CO2 concentrations, ranging from glacial to projected mid-next-century levels. Fertilization with inorganic nutrients at day 13 of the experiment supported the accumulation of phytoplankton biomass, as indicated by two periods of high chl a concentration. This study tested for CO2 sensitivities in primary production (PP) of particulate organic carbon (PPPOC) and of dissolved organic carbon (PPDOC). Therefore, 14C-bottle incubations (24 h) of mesocosm samples were performed at 1 m depth receiving about 60% of incoming radiation. PP for all mesocosms averaged 8.06 ± 3.64 μmol C L−1 d−1 and was slightly higher than in the outside fjord system. Comparison between mesocosms revealed significantly higher PPPOC at elevated compared to low pCO2 after nutrient addition. PPDOC was significantly higher in CO2-enriched mesocosms before as well as after nutrient addition, suggesting that CO2 had a direct influence on DOC production. DOC concentrations inside the mesocosms increased before nutrient addition and more in high CO2 mesocosms. After addition of nutrients, however, further DOC accumulation was negligible and not significantly different between treatments, indicating rapid utilization of freshly produced DOC. Bacterial biomass production (BP) was coupled to PP in all treatments, indicating that 3.5 ± 1.9% of PP or 21.6 ± 12.5% of PPDOC provided on average sufficient carbon for synthesis of bacterial biomass. During the later course of the bloom, the response of 14C-based PP rates to CO2 enrichment differed from net community production (NCP) rates that were also determined during this mesocosm campaign. We conclude that the enhanced release of labile DOC during autotrophic production at high CO2 exceedingly stimulated activities of heterotrophic microorganisms. As a consequence, increased PP induced less NCP, as suggested earlier for carbon-limited microbial systems in the Arctic

    Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters

    Get PDF
    Increasing atmospheric CO2 is decreasing ocean pH most rapidly in colder regions such as the Arctic. As a component of the EPOCA pelagic mesocosm experiment off Spitzbergen in 2010, we examined the consequences of decreased pH and increased pCO2 on the concentrations of dimethylsulphide (DMS). DMS is an important reactant and contributor to aerosol formation and growth in the Arctic troposphere. In the nine mesocosms with initial pH 8.3 to 7.5, equivalent to pCO2 of 180 to 1420 μatm, highly significant but inverse responses to acidity (hydrogen ion concentration [H+]) occurred following nutrient addition. Compared to ambient [H+], average concentrations of DMS during the most representative phase of the 30 d experiment were reduced by approximately 60% at the highest [H+] and by 35% at [H+] equivalent to 750 μatm pCO2, as predicted for 2100. In contrast, concentrations of dimethylsulphoniopropionate (DMSP), the precursor of DMS, were elevated by approximately 50% at the highest [H+] and by 30% at [H+] corresponding to 750 μatm pCO2. Measurements of the specific rate of synthesis of DMSP by phytoplankton indicate increased production at high [H+], in parallel to rates of inorganic carbon fixation. The elevated DMSP production at high [H+] was largely a consequence of increased dinoflagellate biomass and in particular, the increased abundance of the species Heterocapsa rotundata. We discuss both phytoplankton and bacterial processes that may explain the reduced ratios of DMS:DMSPt at higher [H+]. The experimental design of eight treatment levels provides comparatively robust empirical relationships of DMS and DMSP concentration, DMSP production and dinoflagellate biomass versus [H+] in Arctic waters

    New damage curves and multimodel analysis suggest lower optimal temperature

    Get PDF
    Economic analyses of global climate change have been criticized for their poor representation of climate change damages. Here we develop and apply aggregate damage functions in three economic Integrated Assessment Models (IAMs) with different degrees of complexity. The damage functions encompass a wide but still incomplete set of climate change impacts based on physical impact models. We show that with medium estimates for damage functions, global damages are in the range of 10% to 12% of GDP by 2100 in a baseline scenario with 3 °C temperature change, and about 2% in a well-below 2 °C scenario. These damages are much higher than previous estimates in benefit-cost studies, resulting in optimal temperatures below 2 °C with central estimates of damages and discount rates. Moreover, we find a benefit-cost ratio of 1.5 to 3.9, even without considering damages that could not be accounted for, such as biodiversity losses, health and tipping points

    High statistics study of the reaction γp→p  2π0\gamma p\to p\;2\pi^0

    Get PDF
    The photoproduction of 2π0\pi^0 mesons off protons was studied with the Crystal Barrel/TAPS experiment at the electron accelerator ELSA in Bonn. The energy of photons produced in a radiator was tagged in the energy range from 600\,MeV to 2.5\,GeV. Differential and total cross sections and pπ0π0p\pi^0\pi^0 Dalitz plots are presented. Part of the data was taken with a diamond radiator producing linearly polarized photons, and beam asymmetries were derived. Properties of nucleon and Δ\Delta resonances contributing to the pπ0π0p\pi^0\pi^0 final state were determined within the BnGa partial wave analysis. The data presented here allow us to determine branching ratios of nucleon and Δ\Delta resonances for their decays into pπ0π0p\pi^0\pi^0 via several intermediate states. Most prominent are decays proceeding via Δ(1232)π\Delta(1232)\pi, N(1440)1/2+πN(1440)1/2^+\pi, N(1520)3/2−πN(1520)3/2^-\pi, N(1680)5/2+πN(1680)5/2^+\pi, but also pf0(500)pf_0(500), pf0(980)pf_0(980), and pf2(1270)pf_2(1270) contribute to the reaction.Comment: 28 pages, 17 figures, 7 table

    Photoproduction of meson pairs: First measurement of the polarization observable I^s

    Get PDF
    The polarization observable I^s, a feature exclusive to the acoplanar kinematics of multi-meson final states produced via linearly polarized photons, has been measured for the first time. Results for the reaction g p -> p pi0 eta are presented for incoming photon energies between 970 MeV and 1650 MeV along with the beam asymmetry I^c. The comparably large asymmetries demonstrate a high sensitivity of I^s to the dynamics of the reaction. Fits using Bonn-Gatchina partial wave analysis demonstrate that the new polarization observables carry significant information on the contributing partial waves.Comment: 11 pages, 6 figures, v2 to appear in Phys. Lett.

    Visualization and Quantitative Analysis of Reconstituted Tight Junctions Using Localization Microscopy

    Get PDF
    Tight Junctions (TJ) regulate paracellular permeability of tissue barriers. Claudins (Cld) form the backbone of TJ-strands. Pore-forming claudins determine the permeability for ions, whereas that for solutes and macromolecules is assumed to be crucially restricted by the strand morphology (i.e., density, branching and continuity). To investigate determinants of the morphology of TJ-strands we established a novel approach using localization microscopy

    Thin disc, Thick Disc and Halo in a Simulated Galaxy

    Get PDF
    Within a cosmological hydrodynamical simulation, we form a disc galaxy with sub- components which can be assigned to a thin stellar disc, thick disk, and a low mass stellar halo via a chemical decomposition. The thin and thick disc populations so selected are distinct in their ages, kinematics, and metallicities. Thin disc stars are young (<6.6 Gyr), possess low velocity dispersion ({\sigma}U,V,W = 41, 31, 25 km/s), high [Fe/H], and low [O/Fe]. The thick disc stars are old (6.6<age<9.8 Gyrs), lag the thin disc by \sim21 km/s, possess higher velocity dispersion ({\sigma}U,V,W = 49, 44, 35 km/s), relatively low [Fe/H] and high [O/Fe]. The halo component comprises less than 4% of stars in the "solar annulus" of the simulation, has low metallicity, a velocity ellipsoid defined by ({\sigma}U,V,W = 62, 46, 45 km/s) and is formed primarily in-situ during an early merger epoch. Gas-rich mergers during this epoch play a major role in fuelling the formation of the old disc stars (the thick disc). This is consistent with studies which show that cold accretion is the main source of a disc galaxy's baryons. Our simulation initially forms a relatively short (scalelength \sim1.7 kpc at z=1) and kinematically hot disc, primarily from gas accreted during the galaxy's merger epoch. Far from being a competing formation scenario, migration is crucial for reconciling the short, hot, discs which form at high redshift in {\Lambda}CDM, with the properties of the thick disc at z=0. The thick disc, as defined by its abundances maintains its relatively short scale-length at z = 0 (2.31 kpc) compared with the total disc scale-length of 2.73 kpc. The inside-out nature of disc growth is imprinted the evolution of abundances such that the metal poor {\alpha}-young population has a larger scale-length (4.07 kpc) than the more chemically evolved metal rich {\alpha}-young population (2.74 kpc).Comment: Submitted to MNRAS. This version after helpful referee comments. Comments welcome to [email protected]
    • …
    corecore