174 research outputs found

    Spatial patterns and intensity of the surface storm tracks in CMIP5 models

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 4965-4981, doi:10.1175/JCLI-D-16-0228.1.To improve the understanding of storm tracks and western boundary current (WBC) interactions, surface storm tracks in 12 CMIP5 models are examined against ERA-Interim. All models capture an equatorward displacement toward the WBCs in the locations of the surface storm tracks’ maxima relative to those at 850 hPa. An estimated storm-track metric is developed to analyze the location of the surface storm track. It shows that the equatorward shift is influenced by both the lower-tropospheric instability and the baroclinicity. Basin-scale spatial correlations between models and ERA-Interim for the storm tracks, near-surface stability, SST gradient, and baroclinicity are calculated to test the ability of the GCMs’ match reanalysis. An intermodel comparison of the spatial correlations suggests that differences (relative to ERA-Interim) in the position of the storm track aloft have the strongest influence on differences in the surface storm-track position. However, in the North Atlantic, biases in the surface storm track north of the Gulf Stream are related to biases in the SST. An analysis of the strength of the storm tracks shows that most models generate a weaker storm track at the surface than 850 hPa, consistent with observations, although some outliers are found. A linear relationship exists among the models between storm-track amplitudes at 500 and 850 hPa, but not between 850 hPa and the surface. In total, the work reveals a dual role in forcing the surface storm track from aloft and from the ocean surface in CMIP5 models, with the atmosphere having the larger relative influence.JFB was partially supported by the NOAA Climate Program Office’s Modeling, Analysis, Predictions, and Projections program (Grant NA15OAR4310094). Y-OK was supported by NSF Division of Atmospheric and Geospace Science Climate and Large-scale Dynamics Program (AGS-1355339), NASA Physical Oceanography Program (NNX13AM59G), and DOE Office of Biological and Environmental Research Regional and Global Climate Modeling Program (DE-SC0014433). RJS was supported by DOE Office of Biological and Environmental Research (DE-SC0006743) and NSF Directorate for Geosciences Division of Ocean Sciences (1419584),2017-10-0

    The Arctic predictability and prediction on seasonal-to-interannual timescales (APPOSITE) data set version 1

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record. Discussion paper (published on 15 Oct 2015)Recent decades have seen significant developments in seasonal-to-interannual timescale climate prediction capabilities. However, until recently the potential of such systems to predict Arctic climate had not been assessed. This paper describes a multi- 5 model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Inter-annual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model 10 intercomparison project designed to quantify the predictability of Arctic climate on seasonal to inter-annual timescales. Here we present a description of the archived data set (which is available at the British Atmospheric Data Centre) and an update of the project's results. Although designed to address Arctic predictability, this data set could also be used to assess the predictability of other regions and modes of climate vari15 ability on these timescales, such as the El Niño Southern Oscillation.This work was supported by the Natural Environment Research Council (grant NE/I029447/1). Helge Goessling was supported by a fellowship of the German Research Foundation (DFG grant GO 2464/1-1). Data storage and processing capacity was kindly provided by the British Atmospheric Data Centre (BADC). Thanks to Yanjun Jiao (CCCma) for his assistance with the CanCM4 simulations and to Bill Merryfield for his comments on a draft of the pape

    Systematic Estimates of Decadal Predictability for Six CGCMs

    Get PDF
    Initial-value predictability measures the degree to which the initial state can influence predictions. In this paper, the initial-value predictability of six atmosphere–ocean general circulation models in the North Pacific and North Atlantic is quantified and contrasted by analyzing long control integrations with time invariant external conditions. Through the application of analog and multivariate linear regression methodologies, average predictability properties are estimated for forecasts initiated from every state on the control trajectories. For basinwide measures of predictability, the influence of the initial state tends to last for roughly a decade in both basins, but this limit varies widely among the models, especially in the North Atlantic. Within each basin, predictability varies regionally by as much as a factor of 10 for a given model, and the locations of highest predictability are different for each model. Model-to-model variations in predictability are also seen in the behavior of prominent intrinsic basin modes. Predictability is primarily determined by the mean of forecast distributions rather than the spread about the mean. Horizontal propagation plays a large role in the evolution of these signals and is therefore a key factor in differentiating the predictability of the various models
    corecore