310 research outputs found

    Empirical observations and numerical modelling of tides, channel morphology, and vegetative effects on accretion in a restored tidal marsh

    Get PDF
    Tidal marshes form at the confluence between estuarine and marine environments where tidal movement regulates their developmental processes. Here, we investigate how the interplay between tides, channel morphology, and vegetation affect sediment dynamics in a low energy tidal marsh at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island. Poplar Island is an active restoration site where fine‐grained material dredged from navigation channels in the upper Chesapeake Bay are being used to restore remote tidal marsh habitat toward the middle bay (Maryland, USA). Tidal currents were measured over multiple tidal cycles in the inlets and tidal creeks of one marsh at Poplar Island, Cell 1B, using Acoustic Doppler Current Profilers (ADCP) to estimate water fluxes throughout the marsh complex. Sediment fluxes were estimated using acoustic backscatter recorded by ADCPs and validated against total suspended solid measurements taken on site. A high‐resolution geomorphic survey was conducted to capture channel cross sections and tidal marsh morphology. We integrated simple numerical models built in Delft3d with empirical observations to identify which eco‐geomorphological factors influence sediment distribution in various channel configurations with differing vegetative characteristics. Channel morphology influences flood‐ebb dominance in marshes, where deep, narrow channels promote high tidal velocities and incision, increasing sediment suspension and reducing resilience in marshes at Poplar Island. Our numerical models suggest that accurately modelling plant phenology is vital for estimating sediment accretion rates. In‐situ observations indicate that Poplar Island marshes are experiencing erosion typical for many Chesapeake Bay islands. Peak periods of sediment suspension frequently coincide with the largest outflows of water during ebb tides resulting in large sediment deficits. Ebb dominance (net sediment export) in tidal marshes is likely amplified by sea‐level rise and may lower marsh resilience. We couple field observations with numerical models to understand how tidal marsh morphodynamics contribute to marsh resilience

    Composite Overwrapped Pressure Vessels, A Primer

    Get PDF
    Due to the extensive amount of detailed information that has been published on composite overwrapped pressure vessels (COPVs), this document has been written to serve as a primer for those who desire an elementary knowledge of COPVs and the factors affecting composite safety. In this application, the word "composite" simply refers to a matrix of continuous fibers contained within a resin and wrapped over a pressure barrier to form a vessel for gas or liquid containment. COPVs are currently used at NASA to contain high pressure fluids in propulsion, science experiments, and life support applications. They have a significant weight advantage over all metal vessels but require unique design, manufacturing, and test requirements. COPVs also involve a much more complex mechanical understanding due to the interplay between the composite overwrap and the inner liner. A metallic liner is typically used in a COPV as a fluid permeation barrier. The liner design concepts and requirements have been borrowed from all-metal vessels. However, application of metallic vessel design standards to a very thin liner is not straightforward. Different failure modes exist for COPVs than for all-metal vessels, and understanding of these failure modes is at a much more rudimentary level than for metal vessels

    The Wage and Non-wage Costs of Displacement: Evidence from Russia

    Get PDF
    This paper is the first to analyze the costs of job loss in Russia, using unique new data from the Russian Longitudinal Monitoring Survey over the years 2003-2008, including a special supplement on displacement that was initiated by us. We employ fixed effects regression models and propensity score matching techniques in order to establish the causal effect of displacement for displaced individuals. The paper is innovative insofar as we investigate fringe and in-kind benefits and the propensity to have an informal employment relationship as well as a permanent contract as relevant labor market outcomes upon displacement. We also analyze monthly earnings, hourly wages, employment and hours worked, which are traditionally investigated in the literature. Compared to the control group of non-displaced workers (i.e. stayers and quitters), displaced individuals face a significant income loss following displacement, which is mainly due to the reduction in employment and hours worked. This effect is robust to the definition of displacement. The losses seem to be more pronounced and are especially large for older workers with labor market experience and human capital acquired in Soviet times and for workers with primary and secondary education. Workers displaced from state firms experience particularly large relative losses in the short run, while such losses for workers laid off from private firms are more persistent. Turning to the additional non-conventional labor market outcomes, there is a loss in terms of the number of fringe and in-kind benefits for reemployed individuals but not in terms of their value. There is also some evidence of an increased probability of working in informal jobs if displaced. These results point towards the importance of both firm-specific human capital and of obsolete skills obtained under the centrally planned economy as well as to a wider occurrence of job insecurity among displaced workers

    Climate change implications for tidal marshes and food web linkages to estuarine and coastal nekton

    Get PDF
    Climate change is altering naturally fluctuating environmental conditions in coastal and estuarine ecosystems across the globe. Departures from long-term averages and ranges of environmental variables are increasingly being observed as directional changes [e.g., rising sea levels, sea surface temperatures (SST)] and less predictable periodic cycles (e.g., Atlantic or Pacific decadal oscillations) and extremes (e.g., coastal flooding, marine heatwaves). Quantifying the short- and long-term impacts of climate change on tidal marsh seascape structure and function for nekton is a critical step toward fisheries conservation and management. The multiple stressor framework provides a promising approach for advancing integrative, cross-disciplinary research on tidal marshes and food web dynamics. It can be used to quantify climate change effects on and interactions between coastal oceans (e.g., SST, ocean currents, waves) and watersheds (e.g., precipitation, river flows), tidal marsh geomorphology (e.g., vegetation structure, elevation capital, sedimentation), and estuarine and coastal nekton (e.g., species distributions, life history adaptations, predator-prey dynamics). However, disentangling the cumulative impacts of multiple interacting stressors on tidal marshes, whether the effects are additive, synergistic, or antagonistic, and the time scales at which they occur, poses a significant research challenge. This perspective highlights the key physical and ecological processes affecting tidal marshes, with an emphasis on the trophic linkages between marsh production and estuarine and coastal nekton, recommended for consideration in future climate change studies. Such studies are urgently needed to understand climate change effects on tidal marshes now and into the future

    In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism

    Get PDF
    Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance(NMR) methodologies to study changes at the electrode−electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations

    Thinking outside the curve, part I: modeling birthweight distribution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Greater epidemiologic understanding of the relationships among fetal-infant mortality and its prognostic factors, including birthweight, could have vast public health implications. A key step toward that understanding is a realistic and tractable framework for analyzing birthweight distributions and fetal-infant mortality. The present paper is the first of a two-part series that introduces such a framework.</p> <p>Methods</p> <p>We propose describing a birthweight distribution via a normal mixture model in which the number of components is determined from the data using a model selection criterion rather than fixed <it>a priori</it>.</p> <p>Results</p> <p>We address a number of methodological issues, including how the number of components selected depends on the sample size, how the choice of model selection criterion influences the results, and how estimates of mixture model parameters based on multiple samples from the same population can be combined to produce confidence intervals. As an illustration, we find that a 4-component normal mixture model reasonably describes the birthweight distribution for a population of white singleton infants born to heavily smoking mothers. We also compare this 4-component normal mixture model to two competitors from the existing literature: a contaminated normal model and a 2-component normal mixture model. In a second illustration, we discover that a 6-component normal mixture model may be more appropriate than a 4-component normal mixture model for a general population of black singletons.</p> <p>Conclusions</p> <p>The framework developed in this paper avoids assuming the existence of an interval of birthweights over which there are no compromised pregnancies and does not constrain birthweights within compromised pregnancies to be normally distributed. Thus, the present framework can reveal heterogeneity in birthweight that is undetectable via a contaminated normal model or a 2-component normal mixture model.</p
    corecore