160 research outputs found

    Unlocking our understanding of intermittent rivers and ephemeral streams with genomic tools

    Get PDF
    Intermittent rivers and ephemeral streams (IRES) – waterways in which flow ceases periodically or that dry completely – are found worldwide, and their frequency and extent are expected to increase in the future in response to global climate change and growing anthropogenic demand for fresh water. Repeated wet–dry cycles generate highly dynamic settings within river networks composed of aquatic and terrestrial habitats, which act as evolutionary triggers for aquatic and terrestrial biota. Drying also alters functions and processes within river networks, with consequences for ecosystem services. Despite the emergence of promising conceptual and methodological developments, our understanding of the occurrence and diversity of organisms in these ecosystems is limited primarily due to their coupled aquatic–terrestrial characteristics. Novel genomic tools based on high-throughput sequencing have the potential to tackle unanswered questions of pivotal importance to predict future change in IRES. Here, we outline why genomic tools are needed to assess these dynamic ecosystems from the population to the metacommunity scale, and their potential role in bridging ecological–evolutionary dynamics

    Identifying Insects with Incomplete DNA Barcode Libraries, African Fruit Flies (Diptera: Tephritidae) as a Test Case

    Get PDF
    We propose a general working strategy to deal with incomplete reference libraries in the DNA barcoding identification of species. Considering that (1) queries with a large genetic distance with their best DNA barcode match are more likely to be misidentified and (2) imposing a distance threshold profitably reduces identification errors, we modelled relationships between identification performances and distance thresholds in four DNA barcode libraries of Diptera (n = 4270), Lepidoptera (n = 7577), Hymenoptera (n = 2067) and Tephritidae (n = 602 DNA barcodes). In all cases, more restrictive distance thresholds produced a gradual increase in the proportion of true negatives, a gradual decrease of false positives and more abrupt variations in the proportions of true positives and false negatives. More restrictive distance thresholds improved precision, yet negatively affected accuracy due to the higher proportions of queries discarded (viz. having a distance query-best match above the threshold). Using a simple linear regression we calculated an ad hoc distance threshold for the tephritid library producing an estimated relative identification error <0.05. According to the expectations, when we used this threshold for the identification of 188 independently collected tephritids, less than 5% of queries with a distance query-best match below the threshold were misidentified. Ad hoc thresholds can be calculated for each particular reference library of DNA barcodes and should be used as cut-off mark defining whether we can proceed identifying the query with a known estimated error probability (e.g. 5%) or whether we should discard the query and consider alternative/complementary identification methods

    Planktotrons: A novel indoor mesocosm facility for aquatic biodiversity and food web research

    Get PDF
    We established a new indoor mesocosm facility, 12 fully controlled “Planktotrons”, designed to conduct marine and freshwater experiments for biodiversity and food web approaches using natural or artificial, benthic or planktonic communities. The Planktotrons are a unique and custom-tailored facility allowing long-term experiments. Wall growth can be inhibited by a rotating gate paddle with silicone lips. Additionally, temperature and light intensity are individually controllable for each Planktotron and the large volume (600 L) enables high-frequency or volume-intense measurements. In a pilot freshwater experiment various trophic levels of a pelagic food web were maintained for up to 90 d. First, an artificially assembled phytoplankton community of 11 species was inoculated in all Planktotrons. After 22 d, two ciliates were added to all, and three Daphnia species were added to six Planktotrons. After 72 d, dissolved organic matter (DOM, an alkaline soil extract) was added as an external disturbance to six of the 12 Planktotrons, involving three Planktotrons stocked with Daphnia and three without, respectively. We demonstrate the suitability of the Planktotrons for food web and biodiversity research. Variation among replicated Planktotrons (n = 3 minimum) did not differ from other laboratory systems and field experiments. We investigated population dynamics and interactions among the different trophic levels, and found them affected by the sequence of ciliate and Daphnia addition and the disturbance caused by addition of DOM

    Islands beneath islands: phylogeography of a groundwater amphipod crustacean in the Balearic archipelago

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metacrangonyctidae (Amphipoda, Crustacea) is an enigmatic continental subterranean water family of marine origin (thalassoid). One of the species in the genus, <it>Metacrangonyx longipes</it>, is endemic to the Balearic islands of Mallorca and Menorca (W Mediterranean). It has been suggested that the origin and distribution of thalassoid crustaceans could be explained by one of two alternative hypotheses: (1) active colonization of inland freshwater aquifers by a marine ancestor, followed by an adaptative shift; or (2) passive colonization by stranding of ancestral marine populations in coastal aquifers during marine regressions. A comparison of phylogenies, phylogeographic patterns and age estimations of clades should discriminate in favour of one of these two proposals.</p> <p>Results</p> <p>Phylogenetic relationships within <it>M. longipes </it>based on three mitochondrial DNA (mtDNA) and one nuclear marker revealed five genetically divergent and geographically structured clades. Analyses of cytochrome oxidase subunit 1 (<it>cox1</it>) mtDNA data showed the occurrence of a high geographic population subdivision in both islands, with current gene flow occurring exclusively between sites located in close proximity. Molecular-clock estimations dated the origin of <it>M. longipes </it>previous to about 6 Ma, whereas major cladogenetic events within the species took place between 4.2 and 2.0 Ma.</p> <p>Conclusions</p> <p><it>M. longipes </it>displayed a surprisingly old and highly fragmented population structure, with major episodes of cladogenesis within the species roughly correlating with some of the major marine transgression-regression episodes that affected the region during the last 6 Ma. Eustatic changes (vicariant events) -not active range expansion of marine littoral ancestors colonizing desalinated habitats-explain the phylogeographic pattern observed in <it>M. longipes</it>.</p

    Detour and break optimising distance, a new perspective on transport and urbanism

    Get PDF
    International audienceFrom a discussion about the mathematical properties of metrics, we identify three fundamental characteristics of distance, which are optimality, detour and break. We then explore the implications of these properties for transport planning, urbanism and spatial planning. We state that distances contain the idea of optimum and that any distance is associated to a search for optimisation. Pedestrian movements obey this principle and sometimes depart from designed routes. Local sub-optimality conveyed by public transport maps has to be corrected by interventions on public space to relieve the load on central parts of networks. The second principle we state is that detour in distances is most often a means to optimise movement. Fast transport systems generates most of the detour observed in geographical spaces at regional scale. This is why detour has to be taken into account in regional transport policies. The third statement is that breaks in movement contribute to optimising distances. Benches, cafés, pieces of art, railway stations are examples of the urban break. These facilities of break represent an urban paradox: they organise the possibility of a break, of a waste of time in a trip, and they also contribute to optimising distances in a wider network. In that sense break should be considered as a relevant principle for the design of urban space in order to support a pedestrian oriented urban form

    Low Clinical Burden of 2009 Pandemic Influenza A (H1N1) Infection during Pregnancy on the Island of La RĂ©union

    Get PDF
    BACKGROUND: Pregnant women have been identified as a group at risk, both for respiratory complications than for the admissions to the Intensive Care Unit (ICU) during the 2009 H1N1 influenza pandemic (pdm). The purpose of this prospective register-based cohort-study was to characterize the clinical virulence of the pdm (H1N1/09)v during pregnancy in La RĂ©union. METHODS/PRINCIPAL FINDINGS: Over a twelve-week pdm wave (13 July to 3 October 2009), 294 pregnant women presented with an influenza-like illness (ILI) to one of the three maternity departments of the South Reunion area, Indian Ocean. Out of these, 278 were checked by RT-PCR for influenza viruses (157 positive and 121 negative, of whom, 141 with pdm flu and 132 with ILIs of non pdm origin, 5 untyped). The median body temperature was higher in women experiencing pdm flu than in those with non pdm ILI (38.9 degrees C versus 38.3 degrees C, P<0.0001), without evidence linked to circulating viremia. Oseltamivir was given for 86% of pdm flu cases in a median time inferior than 48 hrs (range 0-7 days). The hospitalization rate for pdm flu was of 60% and not associated with underlying conditions. Six viral pneumonia and fourteen asthma attacks were observed among 84 hospitalized pdm flu cases, of whom, only one led to the ICU for an acute lung injury. No maternal death occurred during the pdm wave. None adverse pregnancy outcome was associated with pdm flu. No congenital birth defect, nor early-onset neonatal influenza infection was attributable to pdm flu exposure. CONCLUSIONS/SIGNIFICANCE: This report mitigates substantially the presumed severity of pandemic H1N1/09 influenza infection during pregnancy. The reasons for which the clinical burden of H1N1/09 influenza virus may differ worldwide raise questions about a differential local viral-strain effect and public health preparedness, notably in timely access to special care and antiviral treatments

    Genomic Species Are Ecological Species as Revealed by Comparative Genomics in Agrobacterium tumefaciens

    Get PDF
    The definition of bacterial species is based on genomic similarities, giving rise to the operational concept of genomic species, but the reasons of the occurrence of differentiated genomic species remain largely unknown. We used the Agrobacterium tumefaciens species complex and particularly the genomic species presently called genomovar G8, which includes the sequenced strain C58, to test the hypothesis of genomic species having specific ecological adaptations possibly involved in the speciation process. We analyzed the gene repertoire specific to G8 to identify potential adaptive genes. By hybridizing 25 strains of A. tumefaciens on DNA microarrays spanning the C58 genome, we highlighted the presence and absence of genes homologous to C58 in the taxon. We found 196 genes specific to genomovar G8 that were mostly clustered into seven genomic islands on the C58 genome—one on the circular chromosome and six on the linear chromosome—suggesting higher plasticity and a major adaptive role of the latter. Clusters encoded putative functional units, four of which had been verified experimentally. The combination of G8-specific functions defines a hypothetical species primary niche for G8 related to commensal interaction with a host plant. This supports that the G8 ancestor was able to exploit a new ecological niche, maybe initiating ecological isolation and thus speciation. Searching genomic data for synapomorphic traits is a powerful way to describe bacterial species. This procedure allowed us to find such phenotypic traits specific to genomovar G8 and thus propose a Latin binomial, Agrobacterium fabrum, for this bona fide genomic species

    GO4genome: A Prokaryotic Phylogeny Based on Genome Organization

    Get PDF
    Determining the phylogeny of closely related prokaryotes may fail in an analysis of rRNA or a small set of sequences. Whole-genome phylogeny utilizes the maximally available sample space. For a precise determination of genome similarity, two aspects have to be considered when developing an algorithm of whole-genome phylogeny: (1) gene order conservation is a more precise signal than gene content; and (2) when using sequence similarity, failures in identifying orthologues or the in situ replacement of genes via horizontal gene transfer may give misleading results. GO4genome is a new paradigm, which is based on a detailed analysis of gene function and the location of the respective genes. For characterization of genes, the algorithm uses gene ontology enabling a comparison of function independent of evolutionary relationship. After the identification of locally optimal series of gene functions, their length distribution is utilized to compute a phylogenetic distance. The outcome is a classification of genomes based on metabolic capabilities and their organization. Thus, the impact of effects on genome organization that are not covered by methods of molecular phylogeny can be studied. Genomes of strains belonging to Escherichia coli, Shigella, Streptococcus, Methanosarcina, and Yersinia were analyzed. Differences from the findings of classical methods are discussed
    • 

    corecore