106 research outputs found

    Somatostatin subtype-2 receptor-targeted metal-based anticancer complexes

    Get PDF
    Conjugates of a dicarba analogue of octreotide, a potent somatostatin agonist whose receptors are overexpressed on tumor cells, with [PtCl 2(dap)] (dap = 1-(carboxylic acid)-1,2-diaminoethane) (3), [(η 6-bip)Os(4-CO 2-pico)Cl] (bip = biphenyl, pico = picolinate) (4), [(η 6-p-cym)RuCl(dap)] + (p-cym = p-cymene) (5), and [(η 6-p-cym)RuCl(imidazole-CO 2H)(PPh 3)] + (6), were synthesized by using a solid-phase approach. Conjugates 3-5 readily underwent hydrolysis and DNA binding, whereas conjugate 6 was inert to ligand substitution. NMR spectroscopy and molecular dynamics calculations showed that conjugate formation does not perturb the overall peptide structure. Only 6 exhibited antiproliferative activity in human tumor cells (IC 50 = 63 ± 2 μ in MCF-7 cells and IC 50 = 26 ± 3 μ in DU-145 cells) with active participation of somatostatin receptors in cellular uptake. Similar cytotoxic activity was found in a normal cell line (IC 50 = 45 ± 2.6 μ in CHO cells), which can be attributed to a similar level of expression of somatostatin subtype-2 receptor. These studies provide new insights into the effect of receptor-binding peptide conjugation on the activity of metal-based anticancer drugs, and demonstrate the potential of such hybrid compounds to target tumor cells specifically. © 2012 American Chemical Society

    Hypoxia Sensitive Metal β-Ketoiminate Complexes Showing Induced Single Strand DNA Breaks and Cancer Cell Death by Apoptosis

    Get PDF
    A series of ruthenium and iridium complexes have been synthesised and characterised with 20 novel crystal structures discussed. The library of β-ketoiminate complexes has been shown to be active against MCF-7 (human breast carcino-ma), HT-29 (human colon carcinoma), A2780 (human ovarian carcinoma) and A2780cis (cisplatin resistant human ovarian carcinoma) cell lines, with selected complexes being more than three times as active as cisplatin against the A2780cis cell line. Complexes have also been shown to be highly active under hypoxic conditions, with the activities of some complexes increasing with a decrease in O2 concentration. The enzyme thioredoxin reductase is over-expressed in cancer cells and complexes reported herein have the advantage of inhibiting this enzyme, with IC50 values measured in the nanomolar range. The anti-cancer activity of these complexes was further investigated to determine whether activity is due to effects on cellular growth or cell survival. The complexes were found to induce significant cancer cell death by apoptosis with levels induced correlating closely with activity in chemosensitivity studies. As a possible cause of cell death, the ability of the complexes to induce damage to cellular DNA was also assessed. The complexes failed to induce double strand DNA break or DNA crosslinking but induced significant levels of single DNA strand breaks indi-cating a different mechanism of action to cisplatin

    Contrasting anticancer activity of half-sandwich iridium(III) complexes bearing functionally diverse 2-phenylpyridine ligands

    Get PDF
    We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η5-Cp*)Ir(2-(R′-phenyl)-R-pyridine)Cl] bearing either an electron-donating (−OH, −CH2OH, −CH3) or electron-withdrawing (−F, −CHO, −NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η5-Cp*)Ir(2-(2′-fluorophenyl)pyridine)Cl] (1) and [(η5-Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] (2) exhibit the expected “piano-stool” configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 μM, with the most potent complex, [(η5-Cp*)Ir(2-(2′-methylphenyl)pyridine)Cl] (13) (A2780 IC50 = 1.18 μM), being 10× more active than the parent, [(η5-Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η5-CpxPh)Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η5-Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] (2) and [(η5-Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] (4) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems

    NO2 inhalation induces maturation of pulmonary CD11c+ cells that promote antigenspecific CD4+ T cell polarization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitrogen dioxide (NO<sub>2</sub>) is an air pollutant associated with poor respiratory health, asthma exacerbation, and an increased likelihood of inhalational allergies. NO<sub>2 </sub>is also produced endogenously in the lung during acute inflammatory responses. NO<sub>2 </sub>can function as an adjuvant, allowing for allergic sensitization to an innocuous inhaled antigen and the generation of an antigen-specific Th2 immune response manifesting in an allergic asthma phenotype. As CD11c<sup>+ </sup>antigen presenting cells are considered critical for naïve T cell activation, we investigated the role of CD11c<sup>+ </sup>cells in NO<sub>2</sub>-promoted allergic sensitization.</p> <p>Methods</p> <p>We systemically depleted CD11c<sup>+ </sup>cells from transgenic mice expressing a simian diphtheria toxin (DT) receptor under of control of the CD11c promoter by administration of DT. Mice were then exposed to 15 ppm NO<sub>2 </sub>followed by aerosolized ovalbumin to promote allergic sensitization to ovalbumin and were studied after subsequent inhaled ovalbumin challenges for manifestation of allergic airway disease. In addition, pulmonary CD11c<sup>+ </sup>cells from wildtype mice were studied after exposure to NO<sub>2 </sub>and ovalbumin for cellular phenotype by flow cytometry and <it>in vitro </it>cytokine production.</p> <p>Results</p> <p>Transient depletion of CD11c<sup>+ </sup>cells during sensitization attenuated airway eosinophilia during allergen challenge and reduced Th2 and Th17 cytokine production. Lung CD11c<sup>+ </sup>cells from wildtype mice exhibited a significant increase in MHCII, CD40, and OX40L expression 2 hours following NO<sub>2 </sub>exposure. By 48 hours, CD11c<sup>+</sup>MHCII<sup>+ </sup>DCs within the mediastinal lymph node (MLN) expressed maturation markers, including CD80, CD86, and OX40L. CD11c<sup>+</sup>CD11b<sup>- </sup>and CD11c<sup>+</sup>CD11b<sup>+ </sup>pulmonary cells exposed to NO<sub>2 </sub><it>in vivo </it>increased uptake of antigen 2 hours post exposure, with increased ova-Alexa 647<sup>+ </sup>CD11c<sup>+</sup>MHCII<sup>+ </sup>DCs present in MLN from NO<sub>2</sub>-exposed mice by 48 hours. Co-cultures of ova-specific CD4<sup>+ </sup>T cells from naïve mice and CD11c<sup>+ </sup>pulmonary cells from NO<sub>2</sub>-exposed mice produced IL-1, IL-12p70, and IL-6 <it>in vitro </it>and augmented antigen-induced IL-5 production.</p> <p>Conclusions</p> <p>CD11c<sup>+ </sup>cells are critical for NO<sub>2</sub>-promoted allergic sensitization. NO<sub>2 </sub>exposure causes pulmonary CD11c<sup>+ </sup>cells to acquire a phenotype capable of increased antigen uptake, migration to the draining lymph node, expression of MHCII and co-stimulatory molecules required to activate naïve T cells, and secretion of polarizing cytokines to shape a Th2/Th17 response.</p

    Resolution of inflammation: a new therapeutic frontier

    Get PDF
    Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field

    Development of an international Core Outcome Set (COS) for best care for the dying person: study protocol

    Get PDF
    Background: In contrast to typical measures employed to assess outcomes in healthcare such as mortality or recovery rates, it is difficult to define which specific outcomes of care are the most important in caring for dying individuals. Despite a variety of tools employed to assess different dimensions of palliative care, there is no consensus on a set of core outcomes to be measured in the last days of life. In order to optimise decision making in clinical practice and comparability of interventional studies, we aim to identify and propose a set of core outcomes for the care of the dying person. Methods: Following the COMET initiative approach, the proposed study will proceed through four stages to develop a set of core outcomes: In stage 1, a systematic review of the literature will identify outcomes measured in existing peer reviewed literature, as well as outcomes derived through qualitative studies. Grey literature, will also be included. Stage 2 will allow for the identification and determination of patient and proxy defined outcomes of care at the end of life via quantitative and qualitative methods at an international level. In stage 3, from a list of salient outcomes identified through stages 1 and 2, international experts, family members, patients, and patient advocates will be asked to score the importance of the preselected outcomes through a Delphi process. Stage 4 consists of a face-to-face consensus meeting of in
    corecore