823 research outputs found

    Paleometagenomics reveals environmental microbiome response to vegetation changes in northern Siberia over the millennia

    Get PDF
    The study of environmental ancient DNA provides us with the unique opportunity to link environmental with ecosystem change over a millennial timescale. Paleorecords such as lake sediments contain genetic pools of past living organisms that are a valuable source of information to reconstruct how ecosystems were and how they changed in response to climate in the past. Here, we report on paleometagenomics of a sedimentary record in northern Siberia covering the past 6700 years. We integrated taxonomic with functional gene analysis, which enabled to shed light not only on community compositions but also on eco-physiological adaptations and ecosystem functioning. We reconstructed the presence of an open boreal forest 6700 years ago that over time was gradually replaced by tundra. This vegetation change had major consequences on the environmental microbiome, primarily enriching bacterial and archaeal ammonia oxidizers (e.g., Nitrospira, Nitrosopumilus, and Ca. Nitrosocosmicus) in the tundra ecosystem. We identified a core microbiome conserved through time and largely consisting of heterotrophic bacteria of the Bacteroidetes phylum (e.g., Mucilaginibacter) harboring numerous functional genes for degradation of plant-biomass and abiotic and biotic stress resistance. Archaea were also a key functional guild, involved in nitrogen and carbon cycling, not only methanogenesis but possibly also degradation of plant material via enzymes such as cellulases and amylases. Overall, the paleo-perspective offered by our study can have a profound impact on modern climate change biology, by helping to explain and predict the ecological interplay among multiple ecosystem levels based on past experiences

    Plant Sedimentary Ancient DNA From Far East Russia Covering the Last 28,000 Years Reveals Different Assembly Rules in Cold and Warm Climates

    Get PDF
    Woody plants are expanding into the Arctic in response to the warming climate. The impact on arctic plant communities is not well understood due to the limited knowledge about plant assembly rules. Records of past plant diversity over long time series are rare. Here, we applied sedimentary ancient DNA metabarcoding targeting the P6 loop of the chloroplast trnL gene to a sediment record from Lake Ilirney (central Chukotka, Far Eastern Russia) covering the last 28 thousand years. Our results show that forb-rich steppe-tundra and dwarf-shrub tundra dominated during the cold climate before 14 ka, while deciduous erect-shrub tundra was abundant during the warm period since 14 ka. Larix invasion during the late Holocene substantially lagged behind the likely warmest period between 10 and 6 ka, where the vegetation biomass could be highest. We reveal highest richness during 28–23 ka and a second richness peak during 13–9 ka, with both periods being accompanied by low relative abundance of shrubs. During the cold period before 14 ka, rich plant assemblages were phylogenetically clustered, suggesting low genetic divergence in the assemblages despite the great number of species. This probably originates from environmental filtering along with niche differentiation due to limited resources under harsh environmental conditions. In contrast, during the warmer period after 14 ka, rich plant assemblages were phylogenetically overdispersed. This results from a high number of species which were found to harbor high genetic divergence, likely originating from an erratic recruitment process in the course of warming. Some of our evidence may be of relevance for inferring future arctic plant assembly rules and diversity changes. By analogy to the past, we expect a lagged response of tree invasion. Plant richness might overshoot in the short term; in the long-term, however, the ongoing expansion of deciduous shrubs will eventually result in a phylogenetically more diverse community

    Variants Cause Spastic Paraplegia Associated with Cerebral Hypomyelination

    Get PDF
    Oculodentodigital dysplasia is an autosomal dominant disorder due to variants characterized by dysmorphic features. Neurologic symptoms have been described in some patients but without a clear neuroimaging pattern. To understand the pathophysiology underlying neurologic deficits in oculodentodigital dysplasia, we studied 8 consecutive patients presenting with hereditary spastic paraplegia due to variants. Clinical disease severity was highly variable. Cerebral MR imaging revealed variable white matter abnormalities, consistent with a hypomyelination pattern, and bilateral hypointense signal of the basal ganglia on T2-weighted images and/or magnetic susceptibility sequences, as seen in neurodegeneration with brain iron accumulation diseases. Patients with the more prominent basal ganglia abnormalities were the most disabled ones. This study suggests that -related hereditary spastic paraplegia is a complex neurodegenerative disease affecting both the myelin and the basal ganglia. variants should be considered in patients with hereditary spastic paraplegia presenting with brain hypomyelination, especially if associated with neurodegeneration and a brain iron accumulation pattern

    Constraints on Titan's middle atmosphere ammonia abundance from Herschel/SPIRE sub-millimetre spectra

    Get PDF
    Sub-millimetre spectra measured with Herschel's SPIRE Fourier Transform Spectrometer were used to search for ammonia (NH3) in Titan's stratosphere. Observations were taken during 2010 and 2011, just after Titan's northern spring equinox, which occurred in mid-2009. In our analysis we used high spectral resolution data (0.074 cm-1 apodised) from the SPIRE shortwave spectrometer array (SSW), which provided the best possible signal-to-noise ratio for detecting any NH3 emission features. These data have the most sensitivity to NH3 spectral emission of any currently available observations, although despite this we did not detect any significant emission features above the noise. However, we can place an improved 3-sigma upper limit on NH3 abundance of <0.19ppb for altitudes 65-110 km (75 km peak sensitivity), or alternatively a column abundance of <1.23×1015molecules/cm2. These observations provide modest constraint for future photochemical models and are consistent with most current stratospheric predictions. Scaling of photochemical model profiles, in order to fit elevated abundances observed at 1100 km by Cassini's INMS instrument, are for the most part also consistent with our observations. © 2012 Elsevier Ltd

    IFE Plant Technology Overview and contribution to HiPER proposal

    Full text link
    HiPER is the European Project for Laser Fusion that has been able to join 26 institutions and signed under formal government agreement by 6 countries inside the ESFRI Program of the European Union (EU). The project is already extended by EU for two years more (until 2013) after its first preparatory phase from 2008. A large work has been developed in different areas to arrive to a design of repetitive operation of Laser Fusion Reactor, and decisions are envisioned in the next phase of Technology Development or Risk Reduction for Engineering or Power Plant facilities (or both). Chamber design has been very much completed for Engineering phase and starting of preliminary options for Reactor Power Plant have been established and review here

    How does fusion hindrance show up in medium-light systems? The case of 48Ca + 48Ca

    Get PDF
    The fusion excitation function of 48Ca + 48Ca has been measured above and well below the Coulomb barrier, thereby largely extending the energy range of a previous experiment down to very low cross sections. This system has a negative Q-value for compound nucleus formation. The fusion cross section decreases steadily below the barrier with no conspicuous change of slope below 300 μb. Coupled-channels calculations using a Woods–Saxon potential indicate that a large diffuseness parameter is needed to reproduce the sub-barrier cross sections. A close analogy with the case of 36S + 48Ca, with Q>0, is pointed out. The sign of the Q-value does not influence fusion cross sections down to the 300–600 nb leve

    Specific antibodies to Anopheles gSG6-P1 salivary peptide to assess early childhood exposure to malaria vector bites

    Get PDF
    Background: The estimates of risk of malaria in early childhood are imprecise given the current entomologic and parasitological tools. Thus, the utility of anti-Anopheles salivary gSG6-P1 peptide antibody responses in measuring exposure to Anopheles bites during early infancy has been assessed. Methods: Anti-gSG6-P1 IgG and IgM levels were evaluated in 133 infants (in Benin) at three (M3), six (M6), nine (M9) and 12 (M12) months of age. Specific IgG levels were also assessed in their respective umbilical cord blood (IUCB) and maternal blood (MPB). Results: At M3, 93.98 and 41.35% of infants had anti-gSG6-P1 IgG and IgM Ab, respectively. Specific median IgG and IgM levels gradually increased between M3 and M6 (p < 0.0001 and p < 0.001), M6-M9 (p < 0.0001 and p = 0.085) and M9-M12 (p = 0.002 and p = 0.03). These levels were positively associated with the Plasmodium falciparum infection intensity (p = 0.006 and 0.003), and inversely with the use of insecticide-treated bed nets (p = 0.003 and 0.3). Levels of specific IgG in the MPB were positively correlated to those in the IUCB (R = 0.73; p < 0.0001) and those at M3 (R = 0.34; p < 0.0001). Conclusion: The exposure level to Anopheles bites, and then the risk of malaria infection, can be evaluated in young infants by assessing anti-gSG6-P1 IgM and IgG responses before and after 6-months of age, respectively. This tool can be useful in epidemiological evaluation and surveillance of malaria risk during the first year of life

    Delayed gastric emptying and reduced postprandial small bowel water content of equicaloric whole meal bread versus rice meals in healthy subjects: novel MRI insights

    Get PDF
    BACKGROUND/OBJECTIVES: Postprandial bloating is a common symptom in patients with functional gastrointestinal (GI) diseases. Whole meal bread (WMB) often aggravates such symptoms though the mechanisms are unclear. We used magnetic resonance imaging (MRI) to monitor the intragastric fate of a WMB meal (11% bran) compared to a rice pudding (RP) meal. SUBJECTS/METHODS: 12 healthy volunteers completed this randomised crossover study. They fasted overnight and after an initial MRI scan consumed a glass of orange juice with a 2267 kJ WMB or an equicaloric RP meal. Subjects underwent serial MRI scans every 45 min up to 270 min to assess gastric volumes and small bowel water content and completed a GI symptom questionnaire. RESULTS: The MRI intragastric appearance of the two meals was markedly different. The WMB meal formed a homogeneous dark bolus with brighter liquid signal surrounding it. The RP meal separated into an upper, liquid layer and a lower particulate layer allowing more rapid emptying of the liquid compared to solid phase (sieving). The WMB meal had longer gastric half emptying times (132±8 min) compared to the RP meal (104±7 min), P<0.008. The WMB meal was associated with markedly reduced MRI-visible small bowel free mobile water content compared to the RP meal, P<0.0001. CONCLUSIONS: WMB bread forms a homogeneous bolus in the stomach which inhibits gastric sieving and hence empties slower than the equicaloric rice meal. These properties may explain why wheat causes postprandial bloating and could be exploited to design foods which prolong satiation

    Deformation of the N=Z nucleus 76Sr using beta-decay studies

    Get PDF
    A novel method of deducing the deformation of the N=Z nucleus 76Sr is presented. It is based on the comparison of the experimental Gamow-Teller strength distribution B(GT) from its beta decay with the results of QRPA calculations. This method confirms previous indications of the strong prolate deformation of this nucleus in a totally independent way. The measurement has been carried out with a large Total Absorption gamma Spectrometer, "Lucrecia", newly installed at CERN-ISOLDE.Comment: Accepted in Phys. Rev. Letter
    corecore