38 research outputs found
Influence of birth cohort on age of onset cluster analysis in bipolar I disorder
PURPOSE: Two common approaches to identify subgroups of patients with bipolar disorder are clustering methodology (mixture analysis) based on the age of onset, and a birth cohort analysis. This study investigates if a birth cohort effect will influence the results of clustering on the age of onset, using a large, international database. METHODS: The database includes 4037 patients with a diagnosis of bipolar I disorder, previously collected at 36 collection sites in 23 countries. Generalized estimating equations (GEE) were used to adjust the data for country median age, and in some models, birth cohort. Model-based clustering (mixture analysis) was then performed on the age of onset data using the residuals. Clinical variables in subgroups were compared. RESULTS: There was a strong birth cohort effect. Without adjusting for the birth cohort, three subgroups were found by clustering. After adjusting for the birth cohort or when considering only those born after 1959, two subgroups were found. With results of either two or three subgroups, the youngest subgroup was more likely to have a family history of mood disorders and a first episode with depressed polarity. However, without adjusting for birth cohort (three subgroups), family history and polarity of the first episode could not be distinguished between the middle and oldest subgroups. CONCLUSION: These results using international data confirm prior findings using single country data, that there are subgroups of bipolar I disorder based on the age of onset, and that there is a birth cohort effect. Including the birth cohort adjustment altered the number and characteristics of subgroups detected when clustering by age of onset. Further investigation is needed to determine if combining both approaches will identify subgroups that are more useful for research
Variations in seasonal solar insolation are associated with a history of suicide attempts in bipolar I disorder
Background: Bipolar disorder is associated with circadian disruption and a high risk of suicidal behavior. In a previous exploratory study of patients with bipolar I disorder, we found that a history of suicide attempts was associated with differences between winter and summer levels of solar insolation. The purpose of this study was to confirm this finding using international data from 42% more collection sites and 25% more countries. Methods: Data analyzed were from 71 prior and new collection sites in 40 countries at a wide range of latitudes. The analysis included 4876 patients with bipolar I disorder, 45% more data than previously analyzed. Of the patients, 1496 (30.7%) had a history of suicide attempt. Solar insolation data, the amount of the sunâs electromagnetic energy striking the surface of the earth, was obtained for each onset location (479 locations in 64 countries). Results: This analysis confirmed the results of the exploratory study with the same best model and slightly better statistical significance. There was a significant inverse association between a history of suicide attempts and the ratio of mean winter insolation to mean summer insolation (mean winter insolation/mean summer insolation). This ratio is largest near the equator which has little change in solar insolation over the year, and smallest near the poles where the winter insolation is very small compared to the summer insolation. Other variables in the model associated with an increased risk of suicide attempts were a history of alcohol or substance abuse, female gender, and younger birth cohort. The winter/summer insolation ratio was also replaced with the ratio of minimum mean monthly insolation to the maximum mean monthly insolation to accommodate insolation patterns in the tropics, and nearly identical results were found. All estimated coefficients were significant at p < 0.01. Conclusion: A large change in solar insolation, both between winter and summer and between the minimum and maximum monthly values, may increase the risk of suicide attempts in bipolar I disorder. With frequent circadian rhythm dysfunction and suicidal behavior in bipolar disorder, greater understanding of the optimal roles of daylight and electric lighting in circadian entrainment is needed
Exploratory study of ultraviolet B (UVB) radiation and age of onset of bipolar disorder
Background: Sunlight contains ultraviolet B (UVB) radiation that triggers the production of vitamin D by skin. Vitamin D has widespread effects on brain function in both developing and adult brains. However, many people live at latitudes (about > 40 N or S) that do not receive enough UVB in winter to produce vitamin D. This exploratory study investigated the association between the age of onset of bipolar I disorder and the threshold for UVB sufficient for vitamin D production in a large global sample. Methods: Data for 6972 patients with bipolar I disorder were obtained at 75 collection sites in 41 countries in both hemispheres. The best model to assess the relation between the threshold for UVB sufficient for vitamin D production and age of onset included 1 or more months below the threshold, family history of mood disorders, and birth cohort. All coefficients estimated at P †0.001. Results: The 6972 patients had an onset in 582 locations in 70 countries, with a mean age of onset of 25.6 years. Of the onset locations, 34.0% had at least 1 month below the threshold for UVB sufficient for vitamin D production. The age of onset at locations with 1 or more months of less than or equal to the threshold for UVB was 1.66 years younger. Conclusion: UVB and vitamin D may have an important influence on the development of bipolar disorder. Study limitations included a lack of data on patient vitamin D levels, lifestyles, or supplement use. More study of the impacts of UVB and vitamin D in bipolar disorder is needed to evaluate this supposition
Association between solar insolation and a history of suicide attempts in bipolar I disorder
In many international studies, rates of completed suicide and suicide attempts have a seasonal pattern that peaks in spring or summer. This exploratory study investigated the association between solar insolation and a history of suicide attempt in patients with bipolar I disorder. Solar insolation is the amount of electromagnetic energy from the Sun striking a surface area on Earth. Data were collected previously from 5536 patients with bipolar I disorder at 50 collection sites in 32 countries at a wide range of latitudes in both hemispheres. Suicide related data were available for 3365 patients from 310 onset locations in 51 countries. 1047 (31.1%) had a history of suicide attempt. There was a significant inverse association between a history of suicide attempt and the ratio of mean winter solar insolation/mean summer solar insolation. This ratio is smallest near the poles where the winter insolation is very small compared to the summer insolation. This ratio is largest near the equator where there is relatively little variation in the insolation over the year. Other variables in the model that were positively associated with suicide attempt were being female, a history of alcohol or substance abuse, and being in a younger birth cohort. Living in a country with a state-sponsored religion decreased the association. (All estimated coefficients p <0.01). In summary, living in locations with large changes in solar insolation between winter and summer may be associated with increased suicide attempts in patients with bipolar disorder. Further investigation of the impacts of solar insolation on the course of bipolar disorder is needed.Peer reviewe
K2 Observations of SN 2018oh Reveal a Two-Component Rising Light Curve for a Type Ia Supernova
We present an exquisite, 30-min cadence Kepler (K2) light curve of the Type Ia supernova (SN Ia) 2018oh (ASASSN-18bt), starting weeks before explosion, covering the moment of explosion and the subsequent rise, and continuing past peak brightness. These data are supplemented by multi-color Pan-STARRS1 and CTIO 4-m DECam observations obtained within hours of explosion. The K2 light curve has an unusual two-component shape, where the flux rises with a steep linear gradient for the first few days, followed by a quadratic rise as seen for typical SNe Ia. This "flux excess" relative to canonical SN Ia behavior is confirmed in our -band light curve, and furthermore, SN 2018oh is especially blue during the early epochs. The flux excess peaks 2.14 days after explosion, has a FWHM of 3.12 days, a blackbody temperature of K, a peak luminosity of , and a total integrated energy of . We compare SN 2018oh to several models that may provide additional heating at early times, including collision with a companion and a shallow concentration of radioactive nickel. While all of these models generally reproduce the early K2 light curve shape, we slightly favor a companion interaction, at a distance of based on our early color measurements, although the exact distance depends on the uncertain viewing angle. Additional confirmation of a companion interaction in future modeling and observations of SN 2018oh would provide strong support for a single-degenerate progenitor system
Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations
Supernova (SN) 2018oh (ASASSN-18bt) is the first spectroscopically confirmed Type Ia supernova (SN Ia) observed in the Kepler field. The Kepler data revealed an excess emission in its early light curve, allowing us to place interesting constraints on its progenitor system. Here we present extensive optical, ultraviolet, and near-infrared photometry, as well as dense sampling of optical spectra, for this object. SN 2018oh is relatively normal in its photometric evolution, with a rise time of 18.3 ± 0.3 days and Îm 15(B) = 0.96 ± 0.03 mag, but it seems to have bluer B â V colors. We construct the "UVOIR" bolometric light curve having a peak luminosity of 1.49 Ă 1043 erg sâ1, from which we derive a nickel mass as 0.55 ± 0.04 M â by fitting radiation diffusion models powered by centrally located 56Ni. Note that the moment when nickel-powered luminosity starts to emerge is +3.85 days after the first light in the Kepler data, suggesting other origins of the early-time emission, e.g., mixing of 56Ni to outer layers of the ejecta or interaction between the ejecta and nearby circumstellar material or a nondegenerate companion star. The spectral evolution of SN 2018oh is similar to that of a normal SN Ia but is characterized by prominent and persistent carbon absorption features. The C ii features can be detected from the early phases to about 3 weeks after the maximum light, representing the latest detection of carbon ever recorded in an SN Ia. This indicates that a considerable amount of unburned carbon exists in the ejecta of SN 2018oh and may mix into deeper layers
Seeing Double: ASASSN-18bt Exhibits a Two-component Rise in the Early-time K2 Light
On 2018 February 4.41, the All-Sky Automated Survey for SuperNovae (ASAS-SN) discovered ASASSN-18bt in the K2 Campaign 16 field. With a redshift of z = 0.01098 and a peak apparent magnitude of B max = 14.31, ASASSN-18bt is the nearest and brightest SNe Ia yet observed by the Kepler spacecraft. Here we present the discovery of ASASSN-18bt, the K2 light curve, and prediscovery data from ASAS-SN and the Asteroid Terrestrial-impact Last Alert System. The K2 early-time light curve has an unprecedented 30-minute cadence and photometric precision for an SN Ia light curve, and it unambiguously shows a ~4 day nearly linear phase followed by a steeper rise. Thus, ASASSN-18bt joins a growing list of SNe Ia whose early light curves are not well described by a single power law. We show that a double-power-law model fits the data reasonably well, hinting that two physical processes must be responsible for the observed rise. However, we find that current models of the interaction with a nondegenerate companion predict an abrupt rise and cannot adequately explain the initial, slower linear phase. Instead, we find that existing published models with shallow 56Ni are able to span the observed behavior and, with tuning, may be able to reproduce the ASASSN-18bt light curve. Regardless, more theoretical work is needed to satisfactorily model this and other early-time SNe Ia light curves. Finally, we use Swift X-ray nondetections to constrain the presence of circumstellar material (CSM) at much larger distances and lower densities than possible with the optical light curve. For a constant-density CSM, these nondetections constrain Ï < 4.5 Ă 105 cmâ3 at a radius of 4 Ă 1015 cm from the progenitor star. Assuming a wind-like environment, we place mass loss limits of for v w = 100 km sâ1, ruling out some symbiotic progenitor systems. This work highlights the power of well-sampled early-time data and the need for immediate multiband, high-cadence follow-up for progress in understanding SNe Ia