119 research outputs found
Climate Change and the World’s “Sacred Sea”—Lake Baikal, Siberia
Lake Baikal—the world\u27s largest, oldest, and most biotically diverse lake—is responding strongly to climate change, according to recent analyses of water temperature and ice cover. By the end of this century, the climate of the Baikal region will be warmer and wetter, particularly in winter. As the climate changes, ice cover and transparency, water temperature, wind dynamics and mixing, and nutrient levels are the key abiotic variables that will shift, thus eliciting many biotic responses. Among the abiotic variables, changes in ice cover will quite likely alter food-web structure and function most because of the diverse ways in which ice affects the lake\u27s dominant primary producers (endemic diatoms), the top predator (the world\u27s only freshwater seal), and other abiotic variables. Melting permafrost will probably exacerbate the effects of additional anthropogenic stressors (industrial pollution and cultural eutrophication) and could greatly affect ecosystem functioning
Lake-wide physical and biological trends associated with warming in Lake Baikal
Eutrophication and warming of lakes are occurring globally. Lake Baikal, a large ancient lake composed of three basins, has recently experienced benthic eutrophication at local sites and lake warming in the south basin. Here, we look for signals of warming and pelagic eutrophication across the entire lake using physical and biological data collected at a subset of 79 stations sampled ca. annually (1977–2003) during the period of summer stratification. Lake-wide, surface waters warmed 2.0 °C; and, consistent with this warming, the abundance of two warm-water, cosmopolitan zooplankton taxa increased between two (pelagic cladocerans) and 12-fold (Cyclops kolensis). C. kolensis increased throughout the lake, whereas cladocerans increased significantly only in the north basin. In contrast, abundance of the cold-water endemic copepod, Epischura baikalensis, that dominates the crustacean zooplankton community, did not change. With the exception of one coastal station in the north basin, there is no evidence of pelagic eutrophication. Although chlorophyll concentrations increased 46% lake-wide (0.82 to 1.20 μg/L), the increasing trend was significant only in the south basin. Surprisingly, mean Secchi transparency increased by 1.4 m lake-wide across the 26-year time series with significant deepening of water transparency occurring in the central and north basins. This suggests a decline in productivity in the north and middle basins, but an increase in the south basin. Taken together, these findings suggest that physical and biological changes associatedwithwarming have occurred in Lake Baikal, butwide-spread pelagic eutrophication in the lake\u27s three basins has not
Validity of mobile electronic data capture in clinical studies: a pilot study in a pediatric population.
BACKGROUND: Clinical studies in children are necessary yet conducting multiple visits at study centers remains challenging. The success of "care-at-home" initiatives and remote clinical trials suggests their potential to facilitate conduct of pediatric studies. This pilot aimed to study the feasibility of remotely collecting valid (i.e. complete and correct) saliva samples and clinical data utilizing mobile technology. METHODS: Single-center, prospective pilot study in children undergoing elective tonsillectomy at the University of Basel Children's Hospital. Data on pain scores and concomitant medication and saliva samples were collected by caregivers on two to four inpatient study days and on three consecutive study days at home. A tailored mobile application developed for this study supported data collection. The primary endpoint was the proportion of complete and correct caregiver-collected data (pain scale) and saliva samples in the at-home setting. Secondary endpoints included the proportion of complete and correct saliva samples in the inpatient setting, subjective feasibility for caregivers, and study cost. RESULTS: A total number of 23 children were included in the study of which 17 children, median age 6.0 years (IQR 5.0, 7.4), completed the study. During the at-home phase, 71.9% [CI = 64.4, 78.6] of all caregiver-collected pain assessments and 53.9% [CI = 44.2, 63.4] of all saliva samples were complete and correct. Overall, 64.7% [CI = 58.7, 70.4] of all data collected by caregivers at home was complete and correct. The predominant reason for incorrectness of data was adherence to the timing of predefined patient actions. Participating caregivers reported high levels of satisfaction and willingness to participate in similar trials in the future. Study costs for a potential sample size of 100 patients were calculated to be 20% lower for the at-home than for a traditional in-patient study setting. CONCLUSIONS: Mobile device supported studies conducted at home may provide a cost-effective approach to facilitate conduct of clinical studies in children. Given findings in this pilot study, data collection at home may focus on electronic data capture rather than biological sampling
Rapid and highly variable warming of lake surface waters around the globe
In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.Peer reviewe
Lake surface water temperature [in “State of the Climate in 2019”]
Regional Climates is one chapter from the State of the Climate in 2019 annual report. Compiled
by NOAA’s National Centers for Environmental Information, State of the Climate in 2019 is
based on contributions from scientists from around the world. It provides a detailed update on
global climate indicators, notable weather events, and other data collected by environmental
monitoring stations and instruments located on land, water, ice, and in space.Universidad de Costa Rica/[805-B9-454]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI
A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009
Peer reviewe
Climate change drives widespread shifts in lake thermal habitat
Lake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we use 32 million temperature measurements from 139 lakes to quantify thermal habitat change (percentage of non-overlap) and assess how this change is exacerbated by potential habitat constraints. Long-term temperature change resulted in an average 6.2% non-overlap between thermal habitats in baseline (1978–1995) and recent (1996–2013) time periods, with non-overlap increasing to 19.4% on average when habitats were restricted by season and depth. Tropical lakes exhibited substantially higher thermal non-overlap compared with lakes at other latitudes. Lakes with high thermal habitat change coincided with those having numerous endemic species, suggesting that conservation actions should consider thermal habitat change to preserve lake biodiversity
A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009
Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues
- …