60 research outputs found

    A geology-based 3D velocity model of the Amatrice Basin (Central Italy)

    Get PDF
    In this paper we present a new methodological approach which integrates geological and geophysical data into a 3D modelling process to be mainly employed in seismic hazard assessment studies of earthquake-prone areas around the world, as well as in applications for land use and urban planning. As a case study, the reconstruction of a geology-based 3D velocity model of the uppermost hundreds of metres of the Amatrice high-seismic-hazard area is described. The model was constructed using geological (e.g., maps, cross-sections and core-wells) and geophysical (e.g., down-hole, MASW, refraction, and seismic noise measurements) data, which were georeferenced and uploaded into 3D geological modelling software, where faults, stratigraphic boundaries, and geophysical attributes were digitised, checked, hierarchised, and modelled. The performed 3D geological model was parameterised with Vs and Vp velocities and, finally, the environmental noise (i.e., horizontal-to-vertical spectral ratio analysis, HVSR) recorded at some seismic stations was compared with the seismic responses modelled at some nearby control points. In the study area, the proposed geology-based 3D velocity model represents both a new potential geophysical prediction tool for areas devoid of geophysical measurements (i.e. HVSR curves) and a potential input-model for future ground-motion and seismic-wave-propagation simulations aimed at a more precise local seismic response assessment and, consequently, at the development of more realistic seismic hazard scenarios. The model here presented constitutes a first version of the 3D geological-geophysical model for the studied area, which will be improved with new data and more advanced algorithms available in the future

    U and Th content in the Central Apennines continental crust: a contribution to the determination of the geo-neutrinos flux at LNGS

    Full text link
    The regional contribution to the geo-neutrino signal at Gran Sasso National Laboratory (LNGS) was determined based on a detailed geological, geochemical and geophysical study of the region. U and Th abundances of more than 50 samples representative of the main lithotypes belonging to the Mesozoic and Cenozoic sedimentary cover were analyzed. Sedimentary rocks were grouped into four main "Reservoirs" based on similar paleogeographic conditions and mineralogy. Basement rocks do not outcrop in the area. Thus U and Th in the Upper and Lower Crust of Valsugana and Ivrea-Verbano areas were analyzed. Based on geological and geophysical properties, relative abundances of the various reservoirs were calculated and used to obtain the weighted U and Th abundances for each of the three geological layers (Sedimentary Cover, Upper and Lower Crust). Using the available seismic profile as well as the stratigraphic records from a number of exploration wells, a 3D modelling was developed over an area of 2^{\circ}x2^{\circ} down to the Moho depth, for a total volume of about 1.2x10^6 km^3. This model allowed us to determine the volume of the various geological layers and eventually integrate the Th and U contents of the whole crust beneath LNGS. On this base the local contribution to the geo-neutrino flux (S) was calculated and added to the contribution given by the rest of the world, yielding a Refined Reference Model prediction for the geo-neutrino signal in the Borexino detector at LNGS: S(U) = (28.7 \pm 3.9) TNU and S(Th) = (7.5 \pm 1.0) TNU. An excess over the total flux of about 4 TNU was previously obtained by Mantovani et al. (2004) who calculated, based on general worldwide assumptions, a signal of 40.5 TNU. The considerable thickness of the sedimentary rocks, almost predominantly represented by U- and Th- poor carbonatic rocks in the area near LNGS, is responsible for this difference.Comment: 45 pages, 5 figures, 12 tables; accepted for publication in GC

    RETRACE-3D PROJECT, a multidisciplinary approach for the construction of a 3D crustal model: first results and seismotectonic implications

    Get PDF
    The RETRACE-3D (centRal italy EarThquakes integRAted Crustal modEl) Project has been launched with the ambitious goal to build, as first result, a new, robust, 3D geological model of broad consensus of the area struck by the 2016-2018 Central Italy seismic sequencePublishedBologna3T. Sorgente sismica4T. SismicitĂ  dell'Itali

    New Approaches to Enforcement and Compliance with Labour Regulatory Standards: The Case of Ontario, Canada

    Full text link
    • …
    corecore