80 research outputs found

    Properties of DSB: Ce3+^{3+}, a new inorganic scintillation material

    Get PDF

    Laser test stand for double-sided silicon microstrip sensors

    Get PDF

    The {\eta}'-carbon potential at low meson momenta

    Full text link
    The production of η\eta^\prime mesons in coincidence with forward-going protons has been studied in photon-induced reactions on 12^{12}C and on a liquid hydrogen (LH2_2) target for incoming photon energies of 1.3-2.6 GeV at the electron accelerator ELSA. The η\eta^\prime mesons have been identified via the ηπ0π0η6γ\eta^\prime\rightarrow \pi^0 \pi^0\eta \rightarrow 6 \gamma decay registered with the CBELSA/TAPS detector system. Coincident protons have been identified in the MiniTAPS BaF2_2 array at polar angles of 2θp112^{\circ} \le \theta _{p} \le 11^{\circ}. Under these kinematic constraints the η\eta^\prime mesons are produced with relatively low kinetic energy (\approx 150 MeV) since the coincident protons take over most of the momentum of the incident-photon beam. For the C-target this allows the determination of the real part of the η\eta^\prime-carbon potential at low meson momenta by comparing with collision model calculations of the η\eta^\prime kinetic energy distribution and excitation function. Fitting the latter data for η\eta^\prime mesons going backwards in the center-of-mass system yields a potential depth of V = -(44 ±\pm 16(stat)±\pm15(syst)) MeV, consistent with earlier determinations of the potential depth in inclusive measurements for average η\eta^\prime momenta of \approx 1.1 GeV/cc. Within the experimental uncertainties, there is no indication of a momentum dependence of the η\eta^\prime-carbon potential. The LH2_2 data, taken as a reference to check the data analysis and the model calculations, provide differential and integral cross sections in good agreement with previous results for η\eta^\prime photoproduction off the free proton.Comment: 9 pages, 13 figures. arXiv admin note: text overlap with arXiv:1608.0607

    Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR

    Full text link
    The possibility of measuring the proton electromagnetic form factors in the time-like region at FAIR with the \PANDA detector is discussed. Detailed simulations on signal efficiency for the annihilation of pˉ+p\bar p +p into a lepton pair as well as for the most important background channels have been performed. It is shown that precision measurements of the differential cross section of the reaction pˉ+pe++e\bar p +p \to e^++ e^- can be obtained in a wide angular and kinematical range. The individual determination of the moduli of the electric and magnetic proton form factors will be possible up to a value of momentum transfer squared of q214q^2\simeq 14 (GeV/c)2^2. The total pˉ+pe++e\bar p +p\to e^++e^- cross section will be measured up to q228q^2\simeq 28 (GeV/c)2^2. The results obtained from simulated events are compared to the existing data. Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations, 4 tables, 9 figure

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉpe+e\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉpπ+π\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance

    The BGO Calorimeter of BGO-OD Experiment

    Get PDF
    The BGO Rugby Ball is a large solid angle electromagnetic calorimeter now installed in the ELSA Facility in Bonn. The BGO is operating in the BGO-OD experiment aiming to study meson photoproduction off proton and neutron induced by a Bremsstrahlung polarized gamma beam of energies from 0.2 to 3.2 GeV and an intensity of 5 x 10(7) photons per second. The scintillating material characteristics and the photomultiplier read-out make this detector particularly suited for the detection of medium energy photons and electrons with very good energy resolution. The detector has been equipped with a new electronics read-out system, consisting of 30 sampling ADC Wie-Ne-R modules which perform the off-line reconstruction of the signal start-time allowing for a good timing resolution. Performances in linearity, resolution and time response have been carefully tested at the Beam Test Facility of the INFN National Laboratories in Frascati by using a matrix of 7 BGO crystals coupled to photomultipliers and equipped with the Wie-Ne-R sampling ADCs

    Strangeness Photoproduction at the BGO-OD Experiment

    Get PDF
    BGO-OD is a newly commissioned experiment to investigate the internal structure of the nucleon, using an energy tagged bremsstrahlung photon beam at the ELSA electron facility. The setup consists of a highly segmented BGO calorimeter surrounding the target, with a particle tracking magnetic spectrometer at forward angles. BGO-OD is ideal for investigating meson photoproduction. The extensive physics programme for open strangeness photoproduction is introduced, and preliminary analysis presented

    THE BGO-OD EXPERIMENT AT ELSA

    Get PDF
    Meson photoproduction is a key tool for the experimental investigation of the nucleon excitation spectrum. To disentangle the specific couplings of resonances, in addition to the rather well measured pion and eta photoproduction channels it is mandatory to obtain information on channels involving strange and vector mesons and higher mass pseudoscalar mesons, and the associated multi-particle final states with both charged and neutral particles. In this respect, the new BGO-OD experiment at the ELSA accelerator of the University of Bonn's Physikalisches Institut provides unique instrumentation. We describe the experiment, present its status and the initial program of measurements
    corecore