323 research outputs found

    First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e

    Get PDF
    To date, infrared interferometry at best achieved contrast ratios of a few times 10410^{-4} on bright targets. GRAVITY, with its dual-field mode, is now capable of high contrast observations, enabling the direct observation of exoplanets. We demonstrate the technique on HR8799, a young planetary system composed of four known giant exoplanets. We used the GRAVITY fringe tracker to lock the fringes on the central star, and integrated off-axis on the HR8799e planet situated at 390 mas from the star. Data reduction included post-processing to remove the flux leaking from the central star and to extract the coherent flux of the planet. The inferred K band spectrum of the planet has a spectral resolution of 500. We also derive the astrometric position of the planet relative to the star with a precision on the order of 100μ\,\muas. The GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital solutions. A small adjustment of a few degrees to the orbital inclination of HR 8799 e can resolve the tension, implying that the orbits are close to, but not strictly coplanar. The spectrum, with a signal-to-noise ratio of 5\approx 5 per spectral channel, is compatible with a late-type L brown dwarf. Using Exo-REM synthetic spectra, we derive a temperature of 1150±501150\pm50\,K and a surface gravity of 104.3±0.310^{4.3\pm0.3}\,cm/s2^{2}. This corresponds to a radius of 1.170.11+0.13RJup1.17^{+0.13}_{-0.11}\,R_{\rm Jup} and a mass of 104+7MJup10^{+7}_{-4}\,M_{\rm Jup}, which is an independent confirmation of mass estimates from evolutionary models. Our results demonstrate the power of interferometry for the direct detection and spectroscopic study of exoplanets at close angular separations from their stars.Comment: published in A&

    Phosphodiesterase-5 inhibitors have distinct effects on the hemodynamics of the liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The NO - cGMP system plays a key role in the regulation of sinusoidal tonus and liver blood flow with phosphodiesterase-5 (PDE-5) terminating the dilatory action of cGMP. We, therefore, investigated the effects of PDE-5 inhibitors on hepatic and systemic hemodynamics in rats.</p> <p>Methods</p> <p>Hemodynamic parameters were monitored for 60 min. after intravenous injection of sildenafil and vardenafil [1, 10 and 100 μg/kg (sil1, sil10, sil100, var1, var10, var100)] in anesthetized rats.</p> <p>Results</p> <p>Cardiac output and heart rate remained constant. After a short dip, mean arterial blood pressure again increased. Systemic vascular resistance transiently decreased slightly. Changes in hepatic hemodynamic parameters started after few minutes and continued for at least 60 min. Portal (var10 -31%, sil10 -34%) and hepatic arterial resistance (var10 -30%, sil10 -32%) decreased significantly (p < 0.05). At the same time portal venous (var10 +29%, sil10 +24%), hepatic arterial (var10 +34%, sil10 +48%), and hepatic parenchymal blood flow (var10 +15%, sil10 +15%) increased significantly (p < 0.05). The fractional liver blood flow (total liver flow/cardiac output) increased significantly (var10 26%, sil10 23%). Portal pressure remained constant or tended to decrease. 10 μg/kg was the most effective dose for both PDE-5 inhibitors.</p> <p>Conclusion</p> <p>Low doses of phosphodiesterase-5 inhibitors have distinct effects on hepatic hemodynamic parameters. Their therapeutic use in portal hypertension should therefore be evaluated.</p

    ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset

    Full text link
    Magnetic resonance imaging (MRI) is an important imaging modality in stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. The Ischemic Stroke Lesion Segmentation (ISLES) challenge is a continuous effort to develop and identify benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions (https://doi.org/10.5281/zenodo.7153326). This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location. It is split into a training dataset of n = 250 and a test dataset of n = 150. All training data is publicly available. The test dataset will be used for model validation only and will not be released to the public. This dataset serves as the foundation of the ISLES 2022 challenge (https://www.isles-challenge.org/) with the goal of finding algorithmic methods to enable the development and benchmarking of automatic, robust and accurate segmentation methods for ischemic stroke

    ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset.

    Get PDF
    Magnetic resonance imaging (MRI) is an important imaging modality in stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. The Ischemic Stroke Lesion Segmentation (ISLES) challenge is a continuous effort to develop and identify benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions ( https://doi.org/10.5281/zenodo.7153326 ). This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location. It is split into a training dataset of n = 250 and a test dataset of n = 150. All training data is publicly available. The test dataset will be used for model validation only and will not be released to the public. This dataset serves as the foundation of the ISLES 2022 challenge ( https://www.isles-challenge.org/ ) with the goal of finding algorithmic methods to enable the development and benchmarking of automatic, robust and accurate segmentation methods for ischemic stroke

    U.S. medical resident familiarity with national tuberculosis guidelines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability of medical residents training at U.S. urban medical centers to diagnose and manage tuberculosis cases has important public health implications. We assessed medical resident knowledge about tuberculosis diagnosis and early management based on American Thoracic Society guidelines.</p> <p>Methods</p> <p>A 20-question tuberculosis knowledge survey was administered to 131 medical residents during a single routinely scheduled teaching conference at four different urban medical centers in Baltimore and Philadelphia. Survey questions were divided into 5 different subject categories. Data was collected pertaining to institution, year of residency training, and self-reported number of patients managed for tuberculosis within the previous year. The Kruskal-Wallis test was used to detect differences in median percent of questions answered correctly based on these variables.</p> <p>Results</p> <p>The median percent of survey questions answered correctly for all participating residents was 55%. Medical resident knowledge about tuberculosis did not improve with increasing post-graduate year of training or greater number of patients managed for tuberculosis within the previous year. Common areas of knowledge deficiency included the diagnosis and management of latent tuberculosis infection (median percent correct, 40.7%), as well as the interpretation of negative acid-fast sputum smear samples.</p> <p>Conclusion</p> <p>Many medical residents lack adequate knowledge of recommended guidelines for the management of tuberculosis. Since experience during training influences future practice pattterns, education of medical residents on guidelines for detection and early management of tuberculosis may be important for future improvements in national tuberculosis control strategies.</p

    Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells

    Get PDF
    This work represents a step towards reliable algorithms for reconstructing the micromorphology of electrode materials of high temperature proton exchange membrane fuel cells and for performing pore-scale simulations of fluid flow (including rarefaction effects). In particular, we developed a deterministic model for a woven gas diffusion layer (GDL) and a stochastic model for the catalyst layer (CL) based on clusterization of carbon particles. We verified that both of the models developed accurately recover the experimental values of the permeability, without any special ad hoc tuning. Moreover, we investigated the effect of catalyst particle distributions inside the CL on the degree of clusterization and on the microscopic fluid flow, which is relevant for the modeling of degradation (e.g. loss of phosphoric acid). The three-dimensional pore-scale simulations of the fluid flow for the direct numerical calculation of the permeability were performed by the lattice Boltzmann method (LBM

    Traveling Wave Solutions in a Generalized Theory for Macroscopic Capillarity

    Get PDF
    One-dimensional traveling wave solutions for imbibition processes into a homogeneous porous medium are found within a recent generalized theory of macroscopic capillarity. The generalized theory is based on the hydrodynamic differences between percolating and nonpercolating fluid parts. The traveling wave solutions are obtained using a dynamical systems approach. An exhaustive study of all smooth traveling wave solutions for primary and secondary imbibition processes is reported here. It is made possible by introducing two novel methods of reduced graphical representation. In the first method the integration constant of the dynamical system is related graphically to the boundary data and the wave velocity. In the second representation the wave velocity is plotted as a function of the boundary data. Each of these two graphical representations provides an exhaustive overview over all one-dimensional and smooth solutions of traveling wave type, that can arise in primary and secondary imbibition. Analogous representations are possible for other systems, solution classes, and processes.</p

    Patterns of subregional cerebellar atrophy across epilepsy syndromes: An ENIGMA-Epilepsy study

    Get PDF
    \ua9 2024 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d =.42). Maximum volume loss was observed in the corpus medullare (dmax =.49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax =.47), crus I/II (dmax =.39), VIIIA (dmax =.45), and VIIIB (dmax =.40). Earlier age at seizure onset ((Formula presented.) =.05) and longer epilepsy duration ((Formula presented.) =.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy
    corecore