573 research outputs found

    Estimates of in situ Larval Development Time for the Lobster, Homarus Americanus

    Get PDF
    Larval development time is a critical factor in assessing the potential for larval transport, mortality. and subsequently, the connectivity of marine populations through larval exchange. Most estimates of larval duration are based on laboratory studies and may not reflect development times in nature. For larvae of the American lobster (Homarus americanus), temperature-dependent development times have been established in previous laboratory studies. Here, we used the timing of seasonal abundance curves for newly hatched larvae (stage 1) and the final plankonic instar (postlarva), coupled with a model of temperature-dependent development to assess development time in the field. We were unable to reproduce the timing of the seasonal abundance curves using laboratory development rates in our model. Our results suggest that larval development in situ may be twice as fast as reported laboratory rates. This will result in reduced estimates of larval transport potential, and increased estimates of instantaneous mortality rate and production

    CNH: Fine-Scale Dynamics of Human Adaptation in Coupled Natural and Social Systems: An Integrated Computational Approach Applied to Three Fisheries

    Get PDF
    The purpose of this project is to gain a better understanding of the way competition between individual fishermen lead to the emergence of private incentives and informal social arrangements that are (or are not) consistent with conservation of the resource. These informal arrangements and incentives are important because they help us understand the extent to which private interests might strengthen or weaken on-going resource management and, consequently, the sustainability of coupled human and natural systems. The broad hypothesis driving the study is that the informal social structure that emerges from competitive interactions among fishermen reflects the particular circumstances of the natural system. In some cases, successful competition requires secretive non-cooperative behavior; in others, cooperation tends to yield better competitive results. These different outcomes have different, and not always obvious, impacts on the feasibility and effectiveness of resource management. We think of the relevant human social process as one in which individuals compete with one another through time-consuming and costly acquisition of valuable knowledge about a complex resource. To compete successfully, individuals must balance the immediate benefits that come from exploiting knowledge they currently hold with the costly need to explore for new knowledge; additionally, when seeking new knowledge, individuals must balance the costs and benefits of acquiring knowledge through cooperation or through autonomous search. In order to model this kind of competitive process, we employ a significantly modified version of a technique borrowed from computer science called a learning classifier system (LCS). LCS uses a genetic algorithm to mimic the way an agent (here a fisherman) uses his experience to continuously refine his knowledge and decisions about his natural and social environment. The importance of LCS is that it permits simulation of the co-evolving strategic interactions of self-interested fishermen who are only partially informed about the state of the resource they are exploiting and the fishermen with whom they compete. The problem of understanding these kinds of competitive dynamics is evident in almost all coupled natural and human systems. We apply the approach to a comparative study of three Gulf of Maine fisheries which are characterized by significantly different temporal and spatial dynamics - sea urchins, lobster and cod. Each fishery will be modeled using a biophysical simulator of the natural system and a tightly integrated multi-agent learning classifier system that simulates the learning and interactions of fishermen. The design of each model will be based in part on extensive interviews with fishermen about their knowledge of the dynamics of the fisheries in which they work. We will use these models to explore past and prospective policy problems in each fishery. Beyond the immediate applicability of these explorations, we expect this project will provide a foundation for the wider use of multi-agent learning models in other coupled systems. Project outcomes will be transmitted regularly to industry and managers. Principal investigators include economists, biologists, anthropologists and computer scientists. All the PIs have years of experience in the fisheries of the Gulf of Maine and have well developed relationships with individual fishermen and managers. A masters level student in marine policy, a Ph.D. student in computer or marine science and a post-doctoral researcher in computer science will be employed on the project. In addition, the project will develop an undergraduate course in complex adaptive social-ecological systems and a graduate student/faculty workshop in the same area

    Multi-specimen and multi-site calibration of Aleutian coralline algal Mg/Ca to sea surface temperature

    Get PDF
    Higher latitude oceanic and climatic reconstructions are needed to distinguish natural climate variability from anthropogenic warming in regions projected to experience significant increases in temperature during this century. Clathromorphum nereostra turn is a long-lived coralline alga abundant along the Aleutian archipelago that records seasonal to centennial fluctuations in seawater temperatures in its high-Mg calcite skeleton. Thus, C. nereostratum is an important proxy archive to reconstruct past seawater temperature variability in this data-poor subarctic region. Here, we measured magnesium to calcium ratios (Mg/Ca) by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) along the growth axis in six live-collected specimens from three islands in the Aleutian archipelago to assess Mg/Ca reproducibility and to calibrate algal Mg/Ca against modern gridded sea surface temperature (SST) data products. The master Mg/Ca SST transfer function, determined by averaging the algal Mg/Ca SST from each island (n = 6), resulted in a reconstruction error of +/-0.45 degrees C, a 31-46% reduction in error compared to the reconstruction error for a single alga. The master algal-SST record interpolated to monthly and annual resolution significantly varied with gridded SST data products (r(2) = 0.98, p < 0.0001, n = 517 and r(2) = .27, p < 0.0003, n = 44, respectively) for the period from 1960 to 2003. Therefore, coralline algal Mg/Ca-derived SST reconstructions record absolute changes in past SST variability in the Aleutian archipelago. The transfer functions developed here can be applied to Mg/Ca records generated from long-lived specimens of C. nereostra turn to reconstruct northern North Pacific and Bering Sea SST variability for the past several hundred years

    Twentieth century delta13C variability in surface water dissolved inorganic carbon recorded by coralline algae in the northern North Pacific Ocean and the Bering Sea

    Get PDF
    The oxygen isotopic composition and Mg/Ca ratios in the skeletons of long-lived coralline algae record ambient seawater temperature over time. Similarly, the carbon isotopic composition in the skeletons record δ13C values of ambient seawater dissolved inorganic carbon. Here, we measured δ13C in the coralline alga Clathromorphum nereostratum to test the feasibility of reconstructing the intrusion of anthropogenic CO2 into the northern North Pacific Ocean and Bering Sea. The δ13C was measured in the high Mg-calcite skeleton of three C. nereostratum specimens from two islands 500 km apart in the Aleutian archipelago. In the records spanning 1887 to 2003, the average decadal rate of decline in δ13C values increased from 0.03‰ yr−1 in the 1960s to 0.095‰ yr−1 in the 1990s, which was higher than expected due to solely the δ13C-Suess effect. Deeper water in this region exhibits higher concentrations of CO2 and low δ13C values. Transport of deeper water into surface water (i.e., upwelling) increases when the Aleutian Low is intensified. We hypothesized that the acceleration of the δ13C decline may result from increased upwelling from the 1960s to 1990s, which in turn was driven by increased intensity of the Aleutian Low. Detrended δ13C records also varied on 4–7 year and bidecadal timescales supporting an atmospheric teleconnection of tropical climate patterns to the northern North Pacific Ocean and Bering Sea manifested as changes in upwelling

    Coralline alga reveals first marine record of subarctic North Pacific climate change

    Get PDF
    While recent changes in subarctic North Pacific climate had dramatic effects on ecosystems and fishery yields, past climate dynamics and teleconnection patterns are poorly understood due to the absence of century-long high-resolution marine records. We present the first 117-year long annually resolved marine climate history from the western Bering Sea/Aleutian Island region using information contained in the calcitic skeleton of the long-lived crustose coralline red alga Clathromorphum nereostratum, a previously unused climate archive. The skeletal δ18O-time series indicates significant warming and/or freshening of surface waters after the middle of the 20th century. Furthermore, the time series is spatiotemporally correlated with Pacific Decadal Oscillation (PDO) and tropical El Niño-Southern Oscillation (ENSO) indices. Even though the western Bering Sea/Aleutian Island region is believed to be outside the area of significant marine response to ENSO, we propose that an ENSO signal is transmitted via the Alaskan Stream from the Eastern North Pacific, a region of known ENSO teleconnections

    Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordThe capacity of coral reefs to maintain their structurally complex frameworks and to retain the potential for vertical accretion is vitally important to the persistence of their ecological functioning and the ecosystem services they sustain. However, datasets to support detailed along-coast assessments of framework production rates and accretion potential do not presently exist. Here we estimate, based on gross bioaccretion and bioerosion measures, the carbonate budgets and resultant maximum accretion potential (RAPmax) of the shallow reef zone of leeward Bonaire – between 5 to 12 m depth – at unique fine spatial resolution along this coast (115 sites). Whilst the fringing reef of Bonaire is often reported to be in a better ecological condition than most sites throughout the wider Caribbean region, our data show that the carbonate budgets of the reefs and derived RAPmax rates varied3 considerably across this ~58 km long fringing reef complex. Some areas, in particular the marine reserves, were indeed still dominated by structurally complex coral communities with high net carbonate production (> 10 kg CaCO3 m-2 year-1 35 ), high live coral cover and complex structural topography. The majority of the studied sites, however, were defined by relatively low budget states (< 2 kg CaCO3 m-2 year-1 36 ) or were in a state of net erosion. These data highlight the marked spatial heterogeneity that can occur in budgets states, and thus in reef accretion potential, even between quite closely spaced areas of individual reef complexes. This heterogeneity is linked strongly to the degree of localized land-based impacts along the coast, and resultant differences in the abundance of reef framework building coral species. The major impact of this variability is that those sections of reef defined by low-accretion potential will have limited capacity to maintain their structural integrity and to keep pace with current projections of climate change induced sea-level rise (SLR), thus posing a threat to reef functioning, biodiversity and trophic cascades. Since many Caribbean reefs are more severely degraded than those found around Bonaire, it is to be expected that the findings presented here are rather the rule than the exception, but the study also highlights the need for similar high spatial resolution (along-coast) assessments of budget states and accretion potential to meaningfully explore increasing coastal risk at the country level. The findings also more generally underline the significance of reducing local anthropogenic disturbance and restoring framework-building coral assemblages. Appropriately focussed local preservation efforts may aid in averting future large-scale submergence of Caribbean coral reefs and will constrain the social and economic implications associated with the loss of reef goods and services.Ministry of Economic AffairsWageningen UniversityRoyal Netherlands Institute for Sea Researc

    Global biogeography of coral recruitment: tropical decline and subtropical increase

    Get PDF
    Despite widespread climate-driven reductions of coral cover on tropical reefs, little attention has been paid to the possibility that changes in the geographic distribution of coral recruitment could facilitate beneficial responses to the changing climate through latitudinal range shifts. To address this possibility, we compiled a global database of normalized densities of coral recruits on settlement tiles (corals m(-2)) deployed from 1974 to 2012, and used the data therein to test for latitudinal range shifts in the distribution of coral recruits. In total, 92 studies provided 1253 records of coral recruitment, with 77 % originating from settlement tiles immersed for 3-24 mo, herein defined as long-immersion tiles (LITs); the limited temporal and geographic coverage of data from short-immersion tiles (SITs; deployed for 20 degrees latitude). These trends indicate that a global decline in coral recruitment has occurred since 1974, and the persistent reduction in the densities of recruits in equatorial latitudes, coupled with increased densities in sub-tropical latitudes, suggests that coral recruitment may be shifting poleward

    Avoiding Coral Reef Functional Collapse Requires Local and Global Action

    Get PDF
    oral reefs face multiple anthropogenic threats, from pollution and overfishing to the dual effects of greenhouse gas emissions: rising sea temperature and ocean acidification [1]. While the abundance of coral has declined in recent decades [2, 3], the implications for humanity are difficult to quantify because they depend on ecosystem function rather than the corals themselves. Most reef functions and ecosystem services are founded on the ability of reefs to maintain their three-dimensional structure through net carbonate accumulation [4]. Coral growth only constitutes part of a reef's carbonate budget; bioerosion processes are influential in determining the balance between net structural growth and disintegration [5, 6]. Here, we combine ecological models with carbonate budgets and drive the dynamics of Caribbean reefs with the latest generation of climate models. Budget reconstructions using documented ecological perturbations drive shallow (6-10 m) Caribbean forereefs toward an increasingly fragile carbonate balance. We then projected carbonate budgets toward 2080 and contrasted the benefits of local conservation and global action on climate change. Local management of fisheries (specifically, no-take marine reserves) and the watershed can delay reef loss by at least a decade under "business-as-usual" rises in greenhouse gas emissions. However, local action must be combined with a low-carbon economy to prevent degradation of reef structures and associated ecosystem services
    corecore