28 research outputs found
Agrammatic but numerate
A central question in cognitive neuroscience concerns the extent to
which language enables other higher cognitive functions. In the
case of mathematics, the resources of the language faculty, both
lexical and syntactic, have been claimed to be important for exact
calculation, and some functional brain imaging studies have shown
that calculation is associated with activation of a network of
left-hemisphere language regions, such as the angular gyrus and
the banks of the intraparietal sulcus. We investigate the integrity
of mathematical calculations in three men with large left-hemisphere
perisylvian lesions. Despite severe grammatical impairment
and some difficulty in processing phonological and orthographic
number words, all basic computational procedures were intact
across patients. All three patients solved mathematical problems
involving recursiveness and structure-dependent operations (for
example, in generating solutions to bracket equations). To our
knowledge, these results demonstrate for the first time the remarkable
independence of mathematical calculations from language
grammar in the mature cognitive system
Touch perception reveals the dominance of spatial over digital representation of numbers
We learn counting on our fingers, and the digital representation of numbers we develop is still present in adulthood [Andres M, et a. (2007) J Cognit Neurosci 19:563-576]. Such an anatomy-magnitude association establishes tight functional correspondences between fingers and numbers [Di Luca S, et al. (2006) Q J Exp Psychol 59:16481663]. However, it has long been known that small-to-large magnitude information is arranged left-to-right along a mental number line [Dehaene S, et A (1993) J Exp Psychol Genet 122:371-396]. Here, we investigated touch perception to disambiguate whether number representation is embodied on the hand ("1" = thumb; "5" = little finger) or disembodied in the extrapersonal space ("1" = left, "5" = right). We directly contrasted these number representations in two experiments using a single centrally located effector (the foot) and a simple postural manipulation of the hand (palm-up vs. palm-down). We show that visual presentation of a number ("1" or "5") shifts attention cross-modally, modulating the detection of tactile stimuli delivered on the little finger or thumb. With the hand resting palm-down, subjects perform better when reporting tactile stimuli delivered to the little finger after presentation of number "5" than number "1." Crucially, this pattern reverses (better performance after number "1" than "5") when the hand is in a palm-up posture, in which the position of the fingers in external space, but not their relative anatomical position, is reversed. The human brain can thus use either space- or body-based representation of numbers, but in case of competition, the former dominates the latter, showing the stronger role played by the mental number line organization
Understanding dissociations in dyscalculia: a brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation.
International audienceNeuropsychological studies have revealed different subtypes of dyscalculia, including dissociations between exact calculation and approximation abilities, and an impact of number size on performance. To understand the origins of these effects, we measured cerebral activity with functional MRI at 3 Tesla and event-related potentials while healthy volunteers performed exact and approximate calculation tasks with small and large numbers. Bilateral intraparietal, precentral, dorsolateral and superior prefrontal regions showed greater activation during approximation, while the left inferior prefrontal cortex and the bilateral angular regions were more activated during exact calculation. Increasing number size during exact calculation led to increased activation in the same bilateral intraparietal regions as during approximation, as well the left inferior and superior frontal gyri. Event-related potentials gave access to the temporal dynamics of calculation processes, showing that effects of task and of number size could be found as early as 200-300 ms following problem presentation. Altogether, the results reveal two cerebral networks for number processing. Rote arithmetic operations with small numbers have a greater reliance on left-lateralized regions, presumably encoding numbers in verbal format. Approximation and exact calculation with large numbers, however, put heavier emphasis on the left and right parietal cortices, which may encode numbers in a non-verbal quantity format. Subtypes of dyscalculia can be explained by lesions disproportionately affecting only one of these networks
Fact learning in complex arithmetic : the role of the angular gyrus revisited
© 2016 Wiley Periodicals, Inc. In recent theoretical considerations as well as in neuroimaging findings the left angular gyrus (AG) has been associated with the retrieval of arithmetic facts. This interpretation was corroborated by higher AG activity when processing trained as compared with untrained multiplication problems. However, so far neural correlates of processing trained versus untrained problems were only compared after training. We employed an established learning paradigm (i.e., extensive training of multiplication problems) but measured brain activation before and afte training to evaluate neural correlates of arithmetic fact acquisition more specifically. When comparing activation patterns for trained and untrained problems of the post-training session, higher AG activation for trained problems was replicated. However, when activation for trained problems was compared to activation for the same problems in the pre-training session, no signal change in the AG was observed. Instead, our results point toward a central role of hippocampal, para-hippocampal, and retrosplenial structures in arithmetic fact retrieval. We suggest that the AG might not be associated with the actual retrieval of arithmetic facts, and outline an attentional account of the role of the AG in arithmetic fact retrieval that is compatible with recent attention to memory hypotheses. Hum Brain Mapp 37:3061–3079, 2016. © 2016 Wiley Periodicals, Inc