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Abstract 

In recent theoretical considerations as well as in neuroimaging findings the left angular gyrus 

(AG) has been associated with the retrieval of arithmetic facts. This interpretation was 

corroborated by higher AG activity when processing trained as compared to untrained 

multiplication problems. However, so far neural correlates of processing trained vs. untrained 

problems were only compared after training.  

We employed an established learning paradigm (i.e., extensive training of multiplication 

problems) but measured brain activation before and after the training to evaluate neural 

correlates of arithmetic fact acquisition more specifically. When comparing activation patterns 

for trained and untrained problems of the-post-training session, we replicated higher AG 

activation for trained problems. However, when we compared activation for trained problems 

to activation for the same problems in the pre-training session, no signal change in the AG 

was observed. Instead, our results point towards a central role of hippocampal, para-

hippocampal, and retrosplenial structures in arithmetic fact retrieval. 

We suggest that the AG might not be associated with the actual retrieval of arithmetic facts, 

and outline an attentional account of the role of the AG in arithmetic fact retrieval that is 

compatible with recent attention to memory hypotheses. 

Word count: 192 
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INTRODUCTION 

Mental arithmetic is a particularly well suited domain for investigating learning processes 

because it requires the integration of declarative (e.g., arithmetic facts), procedural (e.g. 

algorithms), and conceptual knowledge (e.g. arithmetic principles). In recent years interest 

regarding the neural mechanisms underlying the acquisition of core arithmetical abilities 

increased (Delazer et al., 2003, 2005; Grabner, Ansari, et al., 2009; Grabner, Ischebeck, et 

al., 2009; Ischebeck et al., 2006; Ischebeck, Zamarian, Egger, Schocke, & Delazer, 2007). 

Brain imaging studies deepen our understanding of the mechanisms underlying the 

acquisition of arithmetic competence. They not only allow for the identification of brain 

structures involved in learning arithmetic facts and procedures but also  for investigating 

changes in brain activation as a consequence of numerical learning. The majority of studies 

on numerical learning so far pursued the acquisition of arithmetic facts by means of drill 

trainings of arithmetic problems - primarily employing difficult multiplication problems (e.g., 43 

x 9 =___, Delazer et al., 2003, 2005; Grabner, Ansari, et al., 2009; Ischebeck et al., 2006). 

All of these training studies compared brain activation patterns associated with the 

processing of either trained or untrained multiplication problems in one fMRI session 

following up on multiple sessions of drill training (for a different approach see Ischebeck et 

al., 2007).  

A consistent finding of these training studies was stronger activation of the fronto-parietal 

network of number processing – such as the left inferior frontal gyrus and the intraparietal 

sulcus (IPS) - for untrained as compared to trained multiplication problems. In contrast, these 

studies reported stronger activation1 in ventral parietal cortex – precisely in the left angular 

gyrus (AG) for trained problems. (e.g., Delazer et al., 2003, 2005; Ischebeck et al., 2006). 

The authors interpreted this change of brain activation patterns after drill training to reflect a 

                                                           
1
 Terminology concerning (de-)activation within the angular gyrus is not consistent across studies. The 

terms higher activation and less deactivation are often used interchangeably to refer to the fact that 
the angular gyrus is deactivated. In fact, the vast majority of training studied observed lesser degrees 
of deactivation in the left AG for trained than untrained multiplication problems (Delazer et al., 2003, 
2005; Grabner et al., 2009; Ischebeck et al., 2006; Ischebeck, Zamarian, Schocke, & Delazer, 2009; 
for a review see Zamarian, Ischebeck, & Delazer, 2009). 
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shift from quantity-based and working memory demanding computations to automatic 

retrieval of arithmetic facts from long-term memory (Delazer et al., 2003; Ischebeck et al., 

2006). It was argued that the left AG constitutes the key area for these retrieval processes 

(e.g., Dehaene, Piazza, Pinel, & Cohen, 2003). In particular researchers assumed the left AG 

to be recruited specifically whenever an arithmetic problem can be solved by retrieval of 

arithmetic facts from verbal long-term memory (e.g. multiplication tables such as 2x3). A 

direct comparison of different learning methods (drill vs. strategies) for solving complex 

multiplication problems seemed to further corroborate the crucial role of the AG in arithmetic 

fact retrieval (Delazer et al., 2005). Multiplication problems trained by drill led to stronger 

involvement of the AG than problems trained by strategies.  

Previous work, however, has only focused on comparing brain activation patterns associated 

with the processing of trained vs. untrained problems after training (Delazer et al., 2003, 

2005; Grabner, Ischebeck, et al., 2009; Ischebeck et al., 2006). This means that changes in 

brain activation due to the actual acquisition of arithmetic facts may not have been evaluated 

sufficiently because there was no fMRI scan before the training. The exact role of the AG for 

the acquisition of arithmetic facts is therefore less clear than suggested by published studies. 

In line with this argument, Grabner, Ischebeck and colleagues (2009) observed a task-

independent increase of AG activation after extensive drill training not only for multiplication 

problems but also for a figural-spatial (non-verbal) task. This is in line with the view that the 

AG might be involved in more general processes of learning such as processes of symbol-

referent mapping which are not domain-specific (Ansari, 2008; Grabner, Ansari, Koschutnig, 

Reishofer, & Ebner, 2013). These findings challenge the idea that the involvement of the AG 

in mental arithmetic can be reduced to retrieval processes from verbal long-term memory. 

Moreover, although increased AG activation after training was generally interpreted as an 

indicator of fact retrieval from long-term memory, none of the studies cited above 

investigating the acquisition of arithmetic facts actually evaluated the role of other cortical 

structures classically associated with long-term memory such as the hippocampus, 
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parahippocampus, or retrosplenial cortex (Baddeley, 1996; Montaldi & Mayes, 2010). Only 

recently, researchers began to elucidate the role of these traditional memory-related cortex 

areas in numerical learning (Qin et al., 2014; Rosenberg-Lee et al., 2014) and arithmetic fact 

retrieval (Klein et al., 2016; Klein, Moeller, Glauche, Weiller, & Willmes, 2013).  

In the present study, we employed a learning paradigm identical to the one used in previous 

studies investigating arithmetic fact learning (i.e., drill training of difficult multiplication 

problems), but measured brain activation during multiplication problem solving by fMRI scans 

before and after the training (pre- and post-training fMRI session). This allowed us to 

evaluate changes in brain activation patterns associated with the actual acquisition of 

arithmetic facts more specifically than the post-training comparison of activation patterns 

elicited by trained vs. untrained problems. In particular, we were interested in the direct 

comparison of AG activation observed for the same set of items before and after the training. 

Additionally, attention was paid to the involvement of cortex areas commonly associated with 

semantic long-term memory (i.e. hippocampus, parahippocampus, and retrosplenial cortex).  

 

Our specific hypotheses were as follows: 

(a) Because all previous studies on arithmetic fact learning by drill reported stronger AG 

activation for trained vs. untrained problems, we expected stronger AG activation for 

both comparisons – the contrast trained vs. untrained multiplication problems of the 

post-training session but also the contrast trained problems of the post-training 

session  vs. the same problems before the training. 

(b) Taking into account recent observations regarding the involvement of the 

hippocampus in numerical learning and arithmetic fact retrieval (Qin et al., 2014; Klein 

et al., 2013, in 2016), we also expected to observe hippocampus activation in the 

same contrasts (i.e., trained vs. untrained problems of the post-training session and 

trained problems of the post-training session vs. untrained problems of the pre-

training session). 
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METHODS 

Participants  

32 right-handed volunteers (24 women, mean age = 22 years; SD = 2) participated in the 

study after having given their written informed consent in accordance with the protocol of the 

local Ethics Committee of the Medical Faculty of the University of Tuebingen. All participants 

had normal or corrected to normal vision and reported neither a previous history of 

neurological or psychiatric disorders nor weakness in arithmetic. 

Stimuli and Design 

Three different item sets were used: to avoid simple repetition effects, two sets comprising 

stimuli that were not trained were generated. The order of these two sets was 

counterbalanced across participants. In the following, untrained-1 (UT1) refers to the 

untrained stimuli of the pre-training session, whereas untrained-2 (UT2) refers to the 

untrained stimuli of the post-training session. The third set comprised the to-be-trained 

stimuli. This latter set is termed to-be trained (TBT) for the pre-training session and trained 

(T) for the post-training session, to distinguish between pre- and post-training sessions and 

to emphasize that stimuli are unknown in the pre-training session. 

Each of the three item sets comprised 34 different two-digit (range 12 – 98) x one-digit 

(range 3-9) multiplication problems (e.g., “36 x 8”). All three sets were matched for the 

following stimulus properties: problem-size of factor one (M = 47.91), problem-size of factor 

two (M = 5.76) as well as for the problem-size of the product (M = 263.91). Within the item 

sets the first factor was odd in 15 and the second factor in 16 of the 34 multiplication 

problems. To provide challenging multiplication problems the second factor was always 

larger than two. Consequently, the majority (29 out of 34) of results was a three-digit number.  

 

Procedure  

Imaging data 
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The experiment was a combined event-related fMRI and reaction time (RT) study. 

Participants were scanned twice at the same time of day, with one week in between, both 

before (pre-training session) and after (post-training session) completing five sessions of 

intensive multiplication training. The TBT item set used in the pre-test fMRI session, was 

then trained in five training sessions outside the scanner. Two additional untrained items 

sets, one in the pre-training (UT1) and the other in the post-training (UT2) fMRI sessions 

were used. In other words, during the pre-training fMRI session items of the to-be-trained set 

(yet unknown to participants, TBT) and of the untrained sets (UT1) were presented. In the 

post-training fMRI session, the items of the second untrained set (UT2, matched for item 

properties) were presented together with the meanwhile trained problems of the to-be-trained 

set (T).  

During pre- and post-training sessions each trial started with the presentation of a fixation 

cross (500ms). Subsequently, a multiplication problem together with the correct result and a 

distractor was presented. Participants then had 7 seconds to respond by pressing one of two 

MRI compatible response buttons with either their right or left thumb. In case participants 

responded earlier within this 7 second period, a mask was shown (## x #) to keep item 

duration fixed and to hold visual input comparable. Each trial was followed by a jittered inter-

trial-interval of 2.5 seconds on average (ranging from 2000 ms to 3000 ms sec). Each fMRI 

session comprised 10 practice and 68 experimental trials. Additionally, 20% null-events of 

7.5 seconds duration each were randomly interspersed over each fMRI session. All stimuli 

were projected on a screen above the head of the participant. Participants viewed the stimuli 

through a mirror mounted on the head coil of the scanner. Foam pads were used to minimize 

head movements within the head coil during fMRI acquisition. Multiplication problems were 

presented centered on the screen. Operands were presented horizontally aligned separated 

by a centered multiplication sign. All stimuli were presented in white Arial 42 font against a 

black background. The experiment was performed using Presentation® software 

(www.neurobs.com).  



8 
 

Participants were instructed to indicate as fast and as accurately as possible, which of two 

solution probes was the correct result. Incorrect solution probes (distractors) always differed 

from the correct result by ∓ 10 to prevent parity-based solution strategies. To familiarize 

participants with task requirements and the input devices, they had to solve 10 multiplication 

problems within the scanner prior to the critical trials. None of these practice items was 

contained in the critical item sets. 

 

Training procedure  

In the training sessions no solution probes were provided and participants had to enter the 

correct result using the number pad of a standard QWERTZ keyboard.  

The multiplication training comprised five training sessions spread over five consecutive days 

following the pre-training fMRI session. Participants were trained on the 34 multiplication 

problems of the to-be-trained set (TBT). Overall, each multiplication problem was presented 

six times. In total, this resulted in 204 trials per training session. Each session was 

subdivided into three blocks. Order of problem presentation was randomized and the same 

problem was never presented on two consecutive trials. Each multiplication problem 

remained visible until the correct result was entered via the number pad. Feedback was 

provided after each attempt to solve a problem. Participants were instructed to solve the 

problems as fast and accurately as possible. Training duration decreased on average from 

approximately 60 min in the first session to about 40 min in the last session. 

The paradigm of the present study closely resembled former studies investigating fact 

learning in complex arithmetic (Delazer et al., 2003; Grabner et al., 2009; Ischebeck et al., 

2006). Nonetheless, the implementation of a two-alternative forced choice paradigm during 

fMRI sessions cannot rule out completely that recognition processes might have occurred 

during task execution. However, we are confident that the free-production paradigm during 

the five training sessions in which the result of a multiplication problem had to be 

reconstructed from scratch did not foster a problem solving strategy predominantly based on 

recognition processes. Besides, in the discussion section we outline a theory on the retrieval 



9 
 

of arithmetic facts from long-term memory (LTM) which emphasizes the importance of 

recognition processes for successful retrieval of arithmetic facts. 

 

MRI/fMRI acquisition  

A high-resolution T1-weighted anatomical scan was acquired with a 3T Siemens Magnetom 

TrioTim MRI system (Siemens AG; Erlangen, Germany) equipped with a 12–channel head 

matrix coil (TR = 2300 s, matrix = 256 x 256 mm², 176 slices, voxel size = 1.0 × 1.0 × 1.0 

mm3; FOV = 256 mm, TE = 2.92 ms; flip angle = 8°). The anatomical scan was performed at 

the end of the experimental sessions.  

Functional T2*-weighted images were obtained using gradient-echo Echo planar imaging 

(EPI; TR = 2400 ms; TE = 30 ms; flip angle = 80°; FOV = 220 mm, 88 x 88 matrix; 42 slices, 

voxel size = 2.5 × 2.5 × 3.0 mm3, gap = 10%). Total scanning time was approximately 20 

minutes. A baseline (rest) condition was accomplished by including about 20% null events in 

the paradigm. 

Analysis 

Behavioral results comprised both response times (RT) and error rates (ER). Analyses of RT 

were based on trials followed by a correct response only. A subsequent trimming procedure 

eliminated all trials for which RT fell outside the interval ± 3 SD around a participant’s mean 

RT. Elimination of incorrect trials and trimming procedure resulted in a loss of 20% trials. We 

used linear mixed effects models (LME) to analyse RT data and generalized linear mixed 

effects models (GLME) with a binomial error distribution and the logit as link function to 

analyse ER data (see the supplementary material for results using conventional repeated 

measures ANOVAs). 

Fixed effects in both analyses were item set (trained vs. untrained), session (pre-training 

session vs. post-training session) and the interaction between item set and session. 

Predictor variables were effect-coded prior to analyses. In the LME for RT data we used the 
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maximum random effect structure as suggested by Barr, Levy, Scheepers, and Tily (2013). 

Thus, we included a random intercept for participants as well as items in the model. 

Additionally, we included random slopes for item set, session and their interaction in the 

model. In the analysis of ER data, we included a random intercept for participants as well as 

items. (G)LME were run using R (R Development Core Team, 2015), and the R package 

lme4 for linear mixed model analyses (Bates, Maechler, Bolker, & Walker, 2014). P-values 

for fixed effects of RT data were derived using the Satterthwaite approximation for degrees of 

freedom available in the R package lmerTest (Kuznetsova, Brockhoff, & Christensen, 2015). 

To obtain p-values for fixed effects of ER data, we ran likelihood ratio tests using the R 

package afex (Singmann, 2015). 

fMRI data analyses were performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm). Images 

were motion corrected and realigned to each participant’s mean image. Imaging data was 

then normalised into standard stereotaxic MNI space (Montreal Neurological Institute, McGill 

University, Montreal, Canada). Images were resampled every 2.5 mm using 4th degree 

spline interpolation and smoothed with a 5 mm FWHM Gaussian kernel to accommodate 

inter-subject variation in brain anatomy and to increase signal-to-noise ratio in the images. 

The data were high-pass filtered (128s) to remove low-frequency noise components and 

corrected for autocorrelation assuming an AR(1) process. Brain activity was convolved over 

all experimental trials with the canonical haemodynamic response function (HRF) and its first 

time derivative.  

Pre- and post-training fMRI sessions were combined on the subject level in a generalized 

linear model (GLM), using SPM12. For each participant, we added two separate sessions. 

Consequently, the GLM on the subject level contained a constant for each session. As 

outlined above, the combination of the two factors item-set [(to-be-)trained vs. untrained] and 

session (pre- vs post-training) resulted in four experimental conditions (UT1, TBT, UT2, T). 

Importantly, to capture the influence of problem difficulty and to control for known effects of 

problem-size on AG activation (e.g., Grabner et al., 2007), we included the covariate 
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problem-size2 (i.e., the size of the result of the multiplication problem) as a parametric 

regressor in the first level analysis, because it is an established indicator of item difficulty 

(Campbell & Epp, 2005 for a review).  

On the group level, we analysed the estimated beta weights for each experimental condition 

of each participant running an ANCOVA with the covariate problem size, using the flexible 

factorial design option within SPM12. In this model the variance between subjects is 

assumed to be different but equal for the different conditions and sessions within a subject. 

An additional test with “unequal” variance between subjects for the different sessions and 

conditions did not reveal substantial differences. 

The SPM Anatomy Toolbox (Eickhoff et al., 2005), available for all published 

cytoarchitectonic maps from www.fz-juelich.de/ime/spm_anatomy_toolbox, was used for 

anatomical localization of effects where applicable. In areas not yet implemented, the 

anatomical automatic labelling tool (AAL) in SPM12 (http://www.cyceron.fr/web/aal 

anatomical_automatic_labeling.html) was used. Activations were thresholded at an 

uncorrected p-value of < .001 at the voxel level with a cluster size of k = 10 voxels and were 

reported when they remained significant following family-wise error correction (FWE) at the 

cluster-level with pcluster-corr < .05. 

In line with our hypothesis, we created two anatomical regions of interest (ROIs) for the 

region of interest analysis using the SPM Anatomy toolbox v2.0 (Eickhoff et al., 2005, 2007; 

Eickhoff, Heim, Zilles, & Amunts, 2006): an anatomical ROI covering (1) the left angular 

gyrus (AG) (areas PGa and PGp) and (2) the hippocampus bilaterally (CA1-3, DG, EC and 

subiculum). since previous work emphasized the role of these areas in arithmetic fact 

retrieval (Figure 1, Cho et al., 2012; Dehaene et al., 2003; Delazer et al., 2003; Ischebeck et 

al., 2006; Klein et al., 2016; Qin et al., 2014). All ROIs were created using the SPM toolbox 

MarsBar (http://marsbar.sourceforge.net). Additionally, we ran a multivariate pattern analysis 

                                                           
2
 Exclusion of the covariate from the model did not change results substantially. 
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(MVPA) in which we trained a support vector machine for classifying trained vs. untrained 

items (see the supplementary material). 

 

RESULTS 

Behavioural results 

Pre- vs post-training comparison of RT and ER data  

The LME revealed a significant interaction of item set and session [F(1,72.63) = 108.56, p < 

.001] indicating that training effects differed between trained and untrained items. Post-hoc 

tests revealed that estimated RT for (to-be-)trained and untrained items differed in the post-

training session (estimated mean difference of untrained vs. trained items = 732 ms, p < 

.001) but not in the pre-training session (estimated mean difference of untrained vs. trained 

items = -34 ms, p = .791). Moreover, mean RT decreased significantly for both untrained and 

trained items from pre- to post-training session (estimated mean difference for untrained 

items = 518 ms, p < .001; estimated mean difference for trained items = 1283 ms, p < .001). 

Furthermore, the LME revealed a significant main effect of the factor item set [F(1, 102.36) = 

7.91 p = .006]: participants needed more time to solve untrained (estimated M = 4028 ms) 

than (to-be-)trained multiplication items (estimated M = 3679 ms). Additionally, a significant 

main effect of the factor session was observed [F(1,32.84) = 190.89, p < .001]. Participants 

were significantly faster in selecting the correct answer to a multiplication problem in the 

post-training (estimated M = 3404 ms) than in the pre-training session (estimate M = 4304 

ms).  

A GLME on ER paralleled the results of the RT analysis. We observed a significant 

interaction of item-set and session [χ²(1) =28.68, p < .001], corroborating the findings of the 

RT analysis. Post-hoc comparisons showed that (to-be-)trained items were solved less error-

prone than untrained items in the post-training session [estimated difference in log odds = 
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0.80, in%: 6% z = 4.19, p < .001] but not in the pre-training session [estimated difference in 

log odds = -0.15, in %: -3%, z = -0.99, p = .513]. Moreover, similar to RT data, participants’ 

error rates decreased from pre- to post-training session for both untrained and trained items 

(estimated difference in log odds for untrained items = 1.04, in%: 16%, z = 9.09, p < .001; 

estimated difference in log odds for trained items = 1.99, in%: 25%, z = 14.95, p < .001). 

Furthermore, both main effects of item set and session were significant. Participants 

committed more errors when solving untrained than (to-be-)trained items [log odds = -1.51 

vs. log odds = -1.84, in %: 18% vs. 14%; χ²(1)= 4.56, p = .033]. Moreover, a highly significant 

main effect of session was observed [χ²(1) =322.72, p < .001] indicating that participants 

made significantly fewer errors after five sessions of multiplication training (log odds = -2.43 

vs. log odds = -0.92, in %: 8% vs. 29%).  

In sum, converging results from RT and ER data provide robust evidence that multiplication 

problem-solving skills improved significantly after five sessions of extensive multiplication 

training.  

 

Imaging results 

Comparing trained and untrained items of the post-training session 

Trained items (T) vs. untrained items (UT2): In line with recent results, contrasting trained 

and untrained multiplication items of the post-training session revealed reliable activation in 

left-hemispheric language areas, the AG, and the basal ganglia. In particular, we observed 

activation in bilateral AG (PGa) (Figure 3, Table 1; T – UT2). Furthermore, we found 

activation in the right supramarginal gyrus (SMG, PFm/PFcm/PFop), bilateral retrosplenial 

cortex, bilateral middle temporal gyrus, bilateral putamen, and left caudate nucleus. 

Importantly, we also found activation difference in bilateral hippocampal and 

parahippocampal areas (Figure 4A). Further clusters with significant activation were 

observed bilaterally in the frontal gyrus.  
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Moreover, we conducted region of interest (ROI) analyses to further evaluate the observed 

activation difference in the left AG and in hippocampal areas. Therefore, we determined left 

AG and bilateral hippocampus as ROIs (see methods section for details; Figure 1) using the 

SPM Anatomy Toolbox v2.0 (Eickhoff et al., 2005, 2007, 2006). The mean percent signal 

changes (PSC) relative to fixation within each ROI were extracted for each participant and 

condition using the MarsBar toolbox (http://marsbar.sourceforge.net). PSC values for the 

respective conditions were then compared using Bonferroni-Holm corrected paired t-tests 

(Holm, 1979). The analysis revealed that the significant activation difference in the AG and 

the hippocampus after training (revealed by the whole brain analysis) reflected a relative 

change in deactivation rather than activation (Figure 5A). Compared to baseline (rest) 

stronger deactivation was observed for untrained than trained multiplication problems in the 

left AG t(31) = 2.70, p = .022 and the hippocampus (t(31) = 2.62; p = 0.03; Figure 5B).  

 

Untrained items post-training (UT2) vs. trained items (T): The reverse comparison between 

untrained and trained multiplication problems after the training revealed - also in line with 

previous studies - left hemispheric activation in the intraparietal sulcus (hIP2, hIP3). Further 

left hemispheric activation was observed for clusters in the insula and putamen, while 

bilateral activation was found in inferior frontal areas (BA 44 and 45), middle frontal gyrus, 

supplementary motor area (BA6), and thalamus (Figure 3, Table 1; UT2 - T).  

 

Comparing trained problems with to-be-trained problems of the pre-training session 

Trained items (T) vs. to-be-trained items pre-training (TBT): The contrast between trained 

multiplication problems vs. to-be-trained multiplication problems before the training revealed 

no supra-threshold activation in the (left) angular gyrus. Instead, bilateral activation in 

retrosplenial cortex, supramarginal gyrus, insula and putamen were observed (Figure 6A, 

Table 2; T - TBT). Furthermore, left hemispheric activation was found in the hippocampus 
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and parahippocampus, while right hemispheric activation included inferior frontal gyrus 

(IFGtri), superior temporal gyrus, thalamus, supplementary motor area (BA6), middle 

cingulate cortex, and occipital clusters. Both, the ROI analysis with left AG (t (31) = -0.60, p = 

.55) and with bilateral hippocampus (t(31) = -0.66, p = .517) as region of interest revealed no 

activation or deactivation difference for trained problems of the post-training session and to-

be-trained problems of the pre-training session.  

We conducted a Bayesian analysis to further examine the potential null effect in AG 

activation for the contrast trained vs. to-be-trained (T - TBT) multiplication problems. The 

Bayes factor (BF) offers a possibility of evaluating evidence in favor of a null hypothesis. The 

alternative hypothesis is compared to the null hypothesis by means of the BF B which 

indicates how much more likely the observed data are under the alternative than under the 

null hypothesis (Dienes, 2014). We calculated a BF of B = 0.269 in favour of the alternative 

hypothesis (difference in AG activation). Thus, the evidence in favour of the null hypothesis 

(no difference in AG activation) was 3.71 (1/0.269) as large as in favour of the alternative 

hypothesis. This value is above 3, which is considered to indicate substantial evidence in 

favour of the null hypothesis (Dienes, 2011, 2014). 

 

To-be-trained items pre-training (TBT) vs. trained items (T): Contrasting activation associated 

with to-be-trained multiplication problems before to activation for trained problems after the 

training revealed activation of a widely distributed network of brain regions with clusters in 

the basal ganglia, left-hemispheric language areas as well as bilateral temporal and frontal 

areas (Figure 6B, Table 2; TBT - T). In particular, we observed signal change in the bilateral 

putamen, caudate nucleus, left inferior frontal gyrus (BA44), bilateral middle and superior 

frontal gyrus (frontal eye fields) as well as in the right superior parietal lobule (Area 7PC). 

Moreover, right inferior temporal gyrus and bilateral temporal poles as well as bilateral 

parahippocampal gyrus, left hippocampus, and right fusiform gyrus showed reliable 

activation. 
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Comparing untrained problems before and after the training 

Untrained items post-training (UT2) vs. untrained items pre-training (UT1): Comparing 

untrained items after to untrained items before the training revealed activation in the left 

intraparietal sulcus (hIP3), bilateral insula, left hemispheric language areas (BA44/45) and 

bilateral thalamus (Figure 7A, Table 2; UT2 – UT1). The reverse contrast (untrained 

multiplication problems before vs. after training; UT1 – UT2) did not reveal any supra-

threshold clusters.  

To-be-trained items pre-training (TBT) vs. untrained items post-training (UT2): Comparing to-

be-trained items before to untrained items after the training revealed a large fronto-parietal 

network of supra-threshold clusters including the angular gyrus and the intraparietal sulcus 

(Figure 7B, Table 2; TBT – UT2). Therefore, although both untrained item sets were matched 

for item properties brain activation after training differed substantially from brain activation 

before training.  

 

Discussion  

Recent results of multiplication training studies indicated the left AG to be associated 

specifically with the retrieval of arithmetic facts from long-term memory (Delazer et al., 2003, 

2005; Ischebeck et al., 2006). However, all these studies evaluated the difference in brain 

activation patterns for trained and untrained multiplication problems in a single post-training 

fMRI session. Consequently, the dynamics of changes in brain activation due to arithmetic 

fact acquisition remained unsolved, because no study directly compared activation patterns 

for to-be-trained problems before to activation patterns for trained problems after training by 

means of fMRI. Therefore, we employed a comparable multiplication training in the present 

study and ran two fMRI sessions – one before and one after the training. This allowed for a 

full pre-post training comparison of brain activation patterns.  
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Importantly, we replicated previous results when we contrasted untrained and trained 

multiplication problems after the training. For the processing of untrained problems fMRI data 

indicated stronger relative signal change in bilateral inferior parietal lobules along the IPS, 

bilateral inferior frontal gyrus as well as in bilateral SMA (Figure 3B). This fronto-parietal 

network of numerical cognition is associated with the manipulation of number magnitude and 

was observed repeatedly for complex arithmetic tasks (see Arsalidou & Taylor, 2011 for 

meta-analysis). Moreover, for trained problems we observed significant signal change in the 

left AG (PGa), accompanied by reduced frontal activation (Figure 3A). So far, this frontal-to-

AG shift was interpreted to reflect a change in solving the respective multiplication problems 

from effortful manipulation of magnitudes to the retrieval of arithmetic facts from long term 

memory (Dehaene et al., 2003; Delazer et al., 2003; Grabner, Ansari, et al., 2009; Ischebeck 

et al., 2006). The idea that the AG seems to be critical for the retrieval of multiplication facts 

from long-term memory was further supported by our MVPA analysis (see supplementary 

material). Average classification accuracy was significantly above chance level and 

depended on the size of the training effect: It was better for participants with larger training 

effects. Furthermore, this interpretation seemed to be corroborated by the behavioural data 

revealing that the decrease in RT and the increase in ER from the pre- to the post-training 

session were more pronounced for the trained problems.  

However, when we contrasted brain activity for trained multiplication problems in the post-

training session with brain activity observed for the very same problems in the pre-training 

session, no significant signal change in in the left AG was present, even when lowering the 

threshold to p < .01 uncorrected. This result of the pre-post training comparison was 

unexpected because we again contrasted brain activation patterns for trained and untrained 

multiplication problems - with the only difference that the untrained items had to be solved 

before the training. This observed null effect in left AG activation difference was 

substantiated by Bayesian analyses indicating it to be reliable. Importantly, apart from the 

missing left AG signal change, the overall activation pattern was almost identical when 

contrasting trained and untrained items either between pre- and post-training fMRI sessions 
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or within the post-training session only. In particular, we found reliable stronger activation in 

areas associated with retrieval from long-term memory such as hippocampus and 

parahippocampal areas as well as signal change in SMG in both contrasts. Thus, the pre-

post-training comparison does not corroborate the dominant assumption that the left AG is 

the key area for arithmetic fact retrieval. Instead, our results point towards a central role of 

brain structures commonly associated with long term memory functioning in arithmetic fact 

retrieval. Activation of the bilateral hippocampus as well as parahippocampal and 

retrosplenial cortex areas were the most stable pattern of results, when contrasting trained 

and untrained multiplication problems across pre- and post-training sessions as well as 

within the post-training session. This was further supported by the MVPA analysis revealing 

that classification accuracy did not differ between the hippocampus and the AG. Additionally, 

classification accuracy for the hippocampus depended on the size of the training effect with 

increasing classification accuracy for participants with larger training effects (see Figure A of 

the supplementary material). In sum, our results corroborate recent neuro-imaging findings 

regarding the importance of areas associated with long-term memory in arithmetic fact 

learning (Supekar et al., 2013) and retrieval (Cho et al., 2012; Klein et al., 2013, 2016).  

To sum up, in the present study we found AG activation only when comparing trained and 

untrained items of the post-training fMRI session (T-UT2) but not for the intersession 

comparison of to-be-trained and trained items (T - TBT), a finding which challenges the 

central role of the AG during the actual retrieval of arithmetic facts. Consequently, two 

questions arise: 1) when the (left) AG itself may not be involved in the actual retrieval of 

arithmetic facts, which structures may then subserve this process? And 2) if the (left) AG 

itself is not involved in actually retrieving arithmetic facts, what is its actual role in retrieval 

situations? 

 

Regions subserving fact retrieval 
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For both the intra-session comparison of trained and untrained multiplication problems (T - 

UT2), as well as for the inter-session comparison of trained and to-be-trained problems (T - 

TBT), we observed activation in brain structures typically associated with long-term memory, 

such as hippocampus and parahippocampus (Montaldi & Mayes, 2010) and the recognition 

of familiarity, such as the retrosplenial cortex (see Vann, Aggleton & Maguire, 2009 for a 

review). The role of these cortical regions for arithmetic fact retrieval and mathematical 

learning processes were specified only recently (Cho et al., 2012; Klein et al., 2016; Qin et al. 

2014; Supekar et al., 2013). 

Based on structural connectivity data, Klein and colleagues (2016) outline a putative theory 

on the role of the hippocampus, parahippocampus and the retrosplenial cortex in arithmetic 

fact retrieval. Fiber tracking data indicate that AG and hippocampus are not connected 

directly but via the retrosplenial cortex only. The main connections of the retrosplenial cortex 

include both ventral and dorsal connections with the hippocampal formation: ventral 

connections with the parahippocampal region and the entorhinal cortex as well as dorsal 

connections with the parietal cortex (Klein et al., 2016). Thereby, the rich connectivity of the 

retrosplenial cortex with both archicortical structures associated with long-term memory and 

neocortical parietal structures associated with the processing of numbers suggests a central 

role of the retrosplenial cortex in the retrieval of arithmetic facts.  

In particular, Klein and colleagues (2016) argue that familiarity information is extracted in the 

retrosplenial cortex during a first stage of the retrieval process, reflecting the domain 

unspecific role of this area in assessing the familiarity of stimuli (e.g., Shah et al., 2001; 

Sugiura, Shah, Zilles, & Fink, 2005). Familiarity information is then propagated via two 

separate bundles to the hippocampus, one via the parahippocampus and one directly to the 

hippocampus and is available to support retrieval.  

The hippocampus itself is thought to integrate familiarity (e.g., from parahippocampal areas, 

retrosplenial cortex) with recollection information (e.g., from enthorinal cortex) to finally 

retrieve (arithmetic) fact information, as argued by Montaldi and Mayes (2010). Interestingly, 
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the network supporting fact retrieval seems to extend to the ventromedial prefrontal cortex 

(VMPFC) as well (see Atique et al., 2011; Baetens; Ma, Steen, & Van Overwalle, 2013; 

Spunt, Satpute, & Lieberman, 2010).  

This putative retrieval model is supported by the findings of the present training study, since, 

both, the hippocampus as well as the retrosplenial cortex and prefrontal areas were 

specifically activated during the retrieval of arithmetic facts. Most importantly, this holds true 

for the intra-session comparison of trained and untrained multiplication problems (T - UT2) 

but also for the inter-session comparison (T - TBT).  

In line with this reasoning, Qin et al. (2014) recently provided a comprehensive overview of 

the involvement of the hippocampus during arithmetic learning and arithmetic fact retrieval. 

For example, hippocampus activation was observed to be largest while children acquired 

retrieval-based and not calculation based solutions. Moreover, by means of multivoxel 

pattern analysis Qin and colleagues (2014) demonstrated that adolescents and adults 

showed less hippocampal activation than children during arithmetic fact retrieval. In contrast, 

however, the stability of multivoxel activation patterns in the hippocampus and prefrontal 

cortex across solved problems increased with refinement of retrieval-based arithmetic 

problem solving. This was interpreted to reflect the acquisition of more stable representations 

of arithmetic fact knowledge. Taken together, this seems to suggest that the hippocampus is 

not only engaged in retrieval from long-term memory but is also important for arithmetic fact 

learning in close functional connection with frontal areas (Qin et al. 2014). This is in line with 

other recent evidence. Cho et al. (2012) showed that children with better fluency in arithmetic 

fact retrieval showed more pronounced hippocampal activation. In this vein, Supekar et al. 

(2013) were able to show that larger hippocampal volume predicted learning improvements 

in a math tutoring program.  

In summary, in the present study we observed the hippocampus, parahippocampus, and 

retrosplenial cortex to be activated specifically whenever trained problems had to be 

processed. In this triad the retrosplenial cortex might be most possibly involved in monitoring 
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familiarity information and recognition (Shah et al., 2001; Vann et al., 2009), while the actual 

retrieval of arithmetic facts may then reflect an integration of familiarity and recollection 

processes in the hippocampus (Montaldi & Mayes, 2010). This has important implications for 

the representation of arithmetic facts. So far, it was supposed that arithmetic fact retrieval is 

associated with inferior parietal areas such as the AG (Dehaene et al., 2003). Extending this 

view, the present data indicate that arithmetic fact retrieval seems to recruit a larger network 

incorporating the hippocampus with its close connections to frontal, retrosplenial, and parietal 

areas. In this network, the hippocampus is associated with retrieval processes from long-

term memory, frontal areas may subserve domain-general cognitive functioning (Qin et al., 

2014; Supekar et al., 2013), the retrosplenial cortex may be associated with familiarity 

recognition (Sugiura et al. 2005), and parietal areas subserve number processing (Klein et 

al., 2016). 

The role of the angular gyrus revisited? 

The missing signal change in the left AG for the pre-post training session comparison of 

trained and untrained multiplication problems is also hard to reconcile with another 

hypothesis on the role of the AG in arithmetic fact retrieval. Following the argument of Ansari 

(2008, see also Grabner et al., 2013) stronger activation of the left AG after training may 

reflect processes of automatic mapping between multiplication problems and their associated 

solutions and thus processes of recognition instead of arithmetic fact retrieval itself. 

However, mapping and associated recognition processes should be equally strong for both 

contrasts: in the intersession (T - TBT) as well as in the intra-session (T - UT2) comparison of 

trained and untrained multiplication problems half of the items were known to participants 

and should thus trigger these mapping processes. In summary, these results challenge both 

the fact-retrieval and the symbol-referent mapping hypothesis about the role of the left AG in 

arithmetic fact learning.  

A possible explanation for the current findings may be an interindividually varying mixture of 

multiplication problem solving strategies of the participants in the pre-training session. It is 
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reasonable to assume that prior to any training participants relied on a combination of fact 

retrieval (e.g., of interim results) and effortful magnitude manipulations. This account was 

supported by the rather undifferentiated activation of the two distinct networks responsible for 

magnitude processing and arithmetic fact retrieval before the training. In this vein, both 

networks were “ramped up” when participants solved complex multiplication problems 

without any prior training. One might speculate that only after the training participants were 

able to solve multiplication problems efficiently and more consistently by either fact retrieval 

(for trained problems) or magnitude manipulations (for untrained problems). That means 

trained problems may then be solved primarily by fact retrieval whereas untrained problems 

still need to be solved by calculation-based strategies. However, because participants were 

trained to solve multiplication problems in five sessions of extensive training the required 

procedures for magnitude manipulation should have been trained as well, as indicated by the 

decrease in RT for untrained problems in the post-training session. This means that solving 

untrained problems relies primarily on magnitude manipulation – before and after training. 

Nevertheless, as computational procedures (for magnitude manipulation) were incidentally 

trained during the training phase, the processing of untrained multiplication problems may 

have changed quantitatively in the sense that the same procedures of magnitude 

manipulation are used more efficiently. In contrast, for trained problems the change in 

processing seemed to be qualitative reflecting a transition from effortful magnitude 

manipulation to direct fact retrieval from long-term memory. 

Following this argument, functional segregation of the magnitude manipulation and the fact 

retrieval system would have been the ultimate result of extensive training. This might explain 

why we replicated the commonly reported frontal-to-AG shift of activation, when we 

contrasted brain activation for trained and untrained problems after the training, whereas no 

AG activation was observed when comparing activation for trained items in the post-training 

session with activation for the same problems before the training. Therefore, we suggest that 

the reported activation of the left AG in arithmetic fact retrieval in previous studies may not 

have reflected the retrieval of facts from verbal long term memory.  
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Instead, we argue that the known engagement of the left AG in domain-unspecific processes 

such as attention regulation (Cabeza, Ciaramelli, & Moscovitch, 2012; Cabeza, 2008; 

Humphreys & Lambon Ralph, 2014) might account for the observation of (left) AG activation 

in studies evaluating arithmetic fact training. In the following we outline an attentional account 

on the role of the AG in arithmetic fact retrieval. 

 

An attentional account on the role of the AG in arithmetic fact retrieval 

Recently a structural and functional subdivision of parietal cortex into dorsal stream areas (in 

or above the IPS, superior parietal lobule, precuneus, i.e., Brodmann Area 7) and ventral 

stream areas (AG, SMG, i.e., Brodman Areas 40 and 39) was put forward, based on the 

specific contribution of these areas for top-down or bottom-up driven allocation of attention in 

memory retrieval (Cabeza et al., 2012; Cabeza, Ciaramelli, Olson, & Moscovitch, 2008; 

Cabeza, 2008; Humphreys & Lambon Ralph, 2014). It was argued that the dorsal part (DPC) 

of the parietal lobe is part of a domain general fronto-parietal executive control system that is 

involved in non-automatic goal directed memory processes with high executive demands 

(i.e., top-down regulated attention). The ventral part (VPC) in contrast was supposed to be 

involved in more automatic and stimulus-driven processing with lower executive demands. 

Interestingly, the latter bottom-up driven attentional system is not only triggered by external 

events (e.g., a flashing light), “but also by highly salient internal events, such when a 

remembered item [e.g., a solution to a trained multiplication problem] ‘pops’ into awareness” 

(Humphreys & Lambon Ralph, 2014).  

Applied to the present case of multiplication fact learning, the typically used contrast of 

brain activation patterns for trained vs. untrained arithmetic problems after the training 

basically reflects a comparison of tasks with low and high executive as well as distinct 

attentional demands. In line with the above argument, processing untrained and trained 

arithmetic problems should differ with respect to top-down vs. bottom-up driven processing. 
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While the result of a known multiplication problem is activated automatically in a bottom-up 

manner by the mere presentation of the respective operands (e.g., Galfano, Penolazzi, 

Vervaeck, Angrilli, & Umiltà, 2009; Galfano, Rusconi, & Umiltà, 2003; Rusconi, Galfano, 

Rebonato, & Umiltà, 2006), this is not assumed for untrained complex arithmetic problems 

(e.g., Dehaene & Cohen, 1995). So far, stronger activation of the VPC (i.e., the AG) for 

trained as compared to untrained multiplication problems after the training was interpreted to 

reflect direct fact retrieval from verbal long term memory (e.g., Delazer et al., 2003, 2005; 

Ischebeck et al., 2006). However, in this interpretation it was widely neglected that task 

execution for trained and untrained problems differs largely with respect to the need for top-

down vs bottom-up attention (but see Grabner et al., 2013 for an automatic symbol-referent 

mapping approach). Following the above rationale on the dorsal-ventral subdivision of 

parietal cortex, one might speculate that stronger activation in the VPC for trained as 

compared to untrained multiplication problems after the training simply reflects the difference 

between bottom-up as compared to top-down processing.  

This account is also compatible with the missing AG activation when contrasting brain 

activation for trained items with activation for the very same problems prior to any training. In 

particular, one might speculate that the intermixed and alternating presentation of trained and 

untrained problems in the post-training fMRI sessions led to repeated shifts between top-

down (i.e, magnitude manipulations) and bottom-up (i.e., fact retrieval) driven solution 

processes, which in turn should be reflected by the activation of VPC areas (including the 

AG) associated with such shifting demands. In contrast, these shifts between top-down 

magnitude manipulations and bottom-up fact retrieval should be less pronounced for the 

contrast of brain activation for trained items after and activation for to-be-trained problems 

prior to the training. In particular, prior to the training both the network for magnitude 

manipulation as well as the network for arithmetic fact retrieval are ramped up and thus 

require constant monitoring and adaptation (as reflected by VPC, including AG activation). In 

turn, this led to no observable differences in AG activation for to-be-trained problems prior to 

the training (TBT) and trained problems (T).  
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The role of the AG in arithmetic fact retrieval might thus reflect its general, domain-unspecific 

role of attention allocation in human cognition as described above. In line with this view, the 

attention to memory (AtoM) model (Cabeza et al., 2012, 2008) posits that VPC activity during 

memory retrieval reflects attentional adjustment based on incoming information from working 

memory (WM) and classical memory structures in the medial temporal lobe and not the 

actual retrieval of information from long term memory itself (Cabeza et al., 2012, 2008; 

Cabeza, 2008). To be more specific, Cabeza and colleagues (2008; 2012) argue that 

analogous to its role in attention allocation “the VPC mediates the bottom up capture of 

attention by salient memory contents” (Cabeza et al., 2012; p. 342). Within this framework, 

the VPC - including the AG - is neither regarded as an accumulator, nor as a buffer for 

information from WM and MTL (including the hippocampus and parahippocampal areas). 

Rather, the AG is assumed to serve as a circuit breaker that signals the need for change in 

the locus of internal attention. 

Based on our findings and theoretical consideration of the AtoM model, we hypothesize that 

the left AG might serve as an interface that adjusts and adapts attentional demands and 

thereby indirectly allocates cognitive resources during number processing. When a solution 

of a trained multiplication problem from long-term memory enters working memory it captures 

bottom-up attention, which is then reflected by VPC (AG) activity.  

In case a multiplication problem cannot be solved by direct fact retrieval from long term 

memory, activation of the DPC and the fronto-parietal network of magnitude processing 

might be ramped up to provide the required top-down attention and therefore further 

cognitive resources. As a result, a shift from bottom-up to top-down driven processing to 

solve the multiplication problem at hand occurs. Consequently, we propose that the AG 

might serve as a circuit-breaker that adapts and adjusts the relative activation of the 

magnitude processing and fact retrieval networks. Based on its functional and structural 

connectivity (e.g., Caspers et al., 2011; Seghier, 2013; Uddin et al., 2010) it is reasonable to 

assume that this putative interfacing mechanism relies on information from working memory 
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areas in prefrontal cortex as well as areas in the MTL, commonly associated with long term 

memory including hippocampus and parahippocampal areas. Importantly, in the current 

study, these areas were consistently activated for both, the comparison of trained vs. 

untrained problems of the post-training session as well as the comparison of trained 

problems of the post-training session with to-be-trained problems of the pre-training session.  

Compared to baseline, the left AG was deactivated in all stimulus conditions. This 

corroborates the findings of previous studies involving mental calculation (e.g., Grabner et 

al., 2007, 2013; Grabner, Ansari, et al., 2009; Grabner, Ischebeck, et al., 2009; Ischebeck et 

al., 2006; Stanescu-Cosson et al., 2000). Comparable deactivations of the left AG during 

cognitive tasks are not restricted to numerical paradigms but were also observed in various 

other domains (for a review see Humphreys & Lambon Ralph, 2014; Raichle, 2015). The AG 

is a key parietal node of the default mode network. Besides the parietal node, this network is 

comprised of medial prefrontal and medial as well as lateral temporal cortices (DMN; 

Raichle, 2015; Raichle et al., 2001). Compared to a resting period or passive baseline, the 

DMN is consistently deactivated during cognitive, goal-directed tasks (for review see 

Andrews-Hanna, Smallwood, & Spreng, 2014; Buckner, Andrews-Hanna, & Schacter, 2008; 

Raichle, 2015). Furthermore, this network is more strongly deactivated for demanding than 

easy cognitive tasks (e.g., Mckiernan, Kaufman, Kucera-Thompson, & Binder, 2003). It has 

therefore been argued that different levels of deactivation in the AG during mental arithmetic 

simply reflect domain-general alterations in the DMN resulting from differences in task 

difficulty (e.g., Wu et al., 2009). However, this view has been questioned by a recent study of 

Grabner and colleagues (2013) showing that a more difficult numerical task led to less 

deactivation in the left AG. This challenges exclusively DMN-related explanations of 

differential activation in the left AG during numerical cognition. In line with this, the fact that 

we did not find any difference in left AG activation when we compared trained items of the 

post-training sessions with to-be-trained items of the pre-training session (T - TBT) is not 

compatible with mere modulation of the DMN due to changing task difficulty. 
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Transfer effects in difficult multiplication learning 

Apart from these unexpected results regarding the role of the left AG in arithmetic fact 

retrieval there was another interesting finding. The pre- vs. post-training comparison of 

behavioral results indicated a transfer effect of the multiplication fact training to untrained 

problems after training, which were responded to significantly faster than before the training. 

Importantly, this is in contrast to the previous either magnitude manipulation or fact retrieval 

distinction assumed for the processing of multiplication problems, which does not consider 

such transfer effects for drill training (Delazer et al., 2003; Grabner, Ischebeck, et al., 2009; 

Zaunmüller et al., 2009). Instead, this finding suggests that similar to what was argued for 

addition and subtraction problems unspecific procedures needed to solve complex 

multiplications are fostered by extensive training. This finding is in line with a recent 

argument by Klein et al. (2016): the authors propose a flexible interplay between fact retrieval 

and magnitude manipulation in complex arithmetic instead of an either-or distinction. Already 

in 1995, Dehaene and Cohen suggested that during complex arithmetic, bilateral intraparietal 

areas would be recruited whenever direct fact retrieval fails, resulting in semantic re-coding 

of the problem by manipulations of the respective magnitudes. However, in previous studies 

on arithmetic fact learning this could not be investigated because both behavioural data as 

well as imaging data was only recorded after the training.  

Taken together, our findings support the view that training difficult multiplication problems not 

only improves declarative knowledge (i.e., arithmetic facts) but also provides transfer effects 

to procedural (e.g., algorithms) and conceptual knowledge (e.g., arithmetic principles), 

because verbally mediated fact retrieval and magnitude manipulation interact closely.  

This interactive nature of magnitude manipulation and arithmetic fact retrieval, reflected in 

our fMRI data, may be due to the way arithmetic facts are acquired. During training, the 

results of multiplication problems have to be calculated by effortful magnitude manipulation at 

a first stage, before they are finally stored in long-term memory as arithmetic facts after 

repeated calculation. One may speculate that this dynamic process of learning also occurs 
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during natural learning of basic multiplication facts in childhood (e.g., Siegler, 1988; 

Campbell & Graham, 1985, see also Domahs & Delazer, 2005). In this sense, our results 

support a multiple stages account of learning arithmetic (e.g., Crawford, 2004; Garnett, 1992; 

Garnett & Fleischner, 1983; Steel & Funnell, 2001; Siegler, 1988). According to this, the 

effective acquisition of arithmetic facts during childhood proceeds through at least three 

stages: In a first stage children need to acquire procedural knowledge of figuring out facts. 

That means concepts like multiplication and the procedures for magnitude manipulation need 

to be learned and practiced. In a second, intermediate, stage strategies for remembering 

facts are developed. For example, one problem is linked to a related problem to solve a task 

(e.g. for 5 x 6, thinking “5 x 5 = 25, so 5 x 6 = 25+5 = 30”, see also Siegler, 1988). 

Consequently, during this stage both fact retrieval and magnitude manipulation take place. 

Finally, in a third stage problems can be recalled directly from LTM as overlearned arithmetic 

facts. Therefore, the present findings stress the importance of a curriculum that follows these 

stages of successful arithmetic fact learning (e.g; Stein, Silbert & Carnine, 1997). For 

example, it is crucial that children develop an understanding of the concept of multiplication 

and practice procedures for magnitude manipulation before memorizing multiplication facts. 

 

Conclusions and Perspectives 

Taken together, in line with previous findings our results point towards a functional role of the 

left AG in mental arithmetic. However, by contrasting brain activation for to-be-trained 

multiplication problems prior and trained problems after the training we found evidence 

indicating that the left AG may not subserve arithmetic fact retrieval per se. Rather, our 

findings point towards an engagement of the left AG in arithmetic fact retrieval that reflect its 

domain-unspecific role for attention allocation during memory retrieval in general. (e.g., 

Cabeza et al., 2012). We propose that based on the attentional demands of the problem at 

hand the AG might serve as a circuit breaker that adjusts and adapts relative activation in the 

neural networks associated with fact retrieval and magnitude manipulation.  
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Thereby, our data suggest that it may be more appropriate to investigate the influence of 

numerical learning on the activation of brain networks rather than considering specific brain 

areas in isolation. Particularly the role of the AG in arithmetic fact retrieval cannot be 

specified comprehensibly when evaluated in isolation. This role needs to be investigated 

considering the influence of other brain regions with which the AG is connected in networks 

subserving long-term memory functioning such as the hippocampus, parahippocampal areas 

and retrosplenial cortex (e.g., Klein et al., 2016) but also attention regulation (e.g., Cabeza et 

al., 2012). Future studies evaluating changes in functional connectivity of the AG during 

arithmetic fact learning are needed to substantiate this argument. In fact, it is rather 

surprising that the AG is still considered the key area for arithmetic fact retrieval even though 

the exact role of posterior parietal cortex sites in more general long-term memory functioning 

is still a matter of controversial debate (see Cabeza et al., 2012, 2008 for review).  
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Figure captions:  

 

Figure 1: The red colour indicates the bilateral hippocampus ROI, comprising areas CA1, 

CA2, CA3, subiculum, and entorhinal cortex. The green colour shows the left AG ROI, 

comprising the areas PGa and PGp. ROIs are presented on a 3D rendered surface and 

coronal slices for bilateral hippocampus and axial slices for left AG, respectively. MNI 

coordinates of the center of mass and size of every ROI in mm3 is denoted in the 

corresponding colour. 

Figure 2: Estimated mean reaction times of the pre-training (TBT: to-be-trained items; UT1: 

untrained-1 items) and post-training (T: trained items; UT2: untrained-2 items) fMRI session. 

Error bars indicate 95% confidence intervals of parameters. 

 

Figure 3: Panel A depicts the comparison of trained and untrained items of the post-training 

session (T – UT2). In line with previous research, larger signal change in left angular gyrus 

as well as further left-hemispheric language areas was replicated. 

Panel B reflects the comparison of untrained and trained items of the post-training session 

(UT2 - T). The activation in the whole fronto-parietal network of magnitude processing 

(including IPS activation, see Table 1) reported in previous studies was replicated as well (all 

at pcluster-corr  < .05, cluster size of k = 10 voxels). 

 

Figure 4: Panel A depicts the comparison of trained and untrained multiplication problems of 

the post-training session (T – UT2), showing bilateral hippocampal and parahippocampal 

activation. Panel B depicts the contrast between trained multiplication problems of the post-

training session and to-be-trained (yet unknown) problems of the pre-training session (T - 

TBT), showing comparable hippocampal and parahippocampal activation (all at pcluster-corr  < 

.05, cluster size of k = 10 voxels). 



37 
 

Figure 5: Percent signal change (PSC) for to-be-trained (TBT), trained (T) and untrained 

(UT1, UT2) multiplication problems in pre - and post-training fMRI session. Subjects had to 

select the correct result to a presented multiplication problem. Panel A depicts results from 

the left AG (PGa, PGp), reflecting in all conditions a relative change in deactivation rather 

than activation. Panel B shows the respective pattern in the bilateral hippocampi. While 

signal change was about 0 before the training, a significant stronger deactivation of the 

hippocampi is shown after the training for untrained items compared to trained items, 

revealing that the hippocampus significantly less used when untrained items had to be 

solved compared to trained items (all at pcluster-corr  < .05, cluster size of k = 10 voxels). 

 

Figure 6: Panel A shows no significant angular gyrus signal change for the contrast between 

trained multiplication problems of the post-training session and to-be-trained multiplication 

problems (yet unknown) of the pre-training session (T – TBT). However, the perisylvian 

language areas are activated. Panel B depicts the contrast between to-be-trained 

multiplication problems of the pre-training session and trained problems of the post-training 

session (TBT – T). A widely distributed network of brain regions is revealed including clusters 

in the superior parietal cortex, many frontal clusters as well as temporal activation (all at 

pcluster-corr  < .05, cluster size of k = 10 voxels). 

 

Figure 7: Panel A shows the comparison of untrained items of the pre-training session with 

untrained items of the post-training session (UT2 – UT1), revealing activation in left IPS as 

well as left middle and inferior frontal areas. Panel B depicts the comparison of to-be-trained 

items of the pre-training session to untrained items of the post-training session (TBT – UT2), 

revealing a large fronto-parietal network of supra-threshold clusters including the angular 

gyrus and the intraparietal sulcus. 
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Supplementary Material  

Fact Learning in Complex Arithmetic – The Role of the Angular Gyrus revisited 

Johannes Bloechle, Stefan Huber, Julia Bahnmueller, Johannes Rennig, Klaus Willmes, 

Cavdaroglu Seda, Korbinian Moeller, & Elise Klein 

 

Multivoxel Pattern Analysis (MVPA) 

In line with our hypothesis, we created two regions of interest (ROIs) for the multivariate 

pattern analysis and the univariate ROI analysis using the SPM Anatomy toolbox v2.0 

(Eickhoff et al., 2005, 2007, 2006): an anatomical ROI covering (1) the left angular gyrus 

(AG) (Area PGa and PGp) and (2) the hippocampus bilaterally (CA1-3, DG, EC and 

subiculum), since previous work emphasized the role of these areas in arithmetic fact 

retrieval. All ROIs were created using the SPM toolbox MarsBar 

(http://marsbar.sourceforge.net). 

We ran the multivariate analysis using unsmoothed images of the processed data employing 

The Decoding Toolbox (TDT, Hebart, Görgen, & Haynes, 2014). To extract feature vectors 

from our fMRI images, we applied the approach suggested by Mumford, Turner, Ashby and 

Poldrack (2012). Thus, we calculated beta regression coefficient images for each item using 

a general linear model including a regressor for that item as well as another regressor for all 

other items. We then trained support vector machines employing the LIBSVM 3.20 (Chang 

and Lin, 2011) for classifying trained vs. untrained items. In this process, we used a linear 

classifier. Moreover, we conducted grid search to optimize the regularization parameter (C = 

[0.001, 0.01, 0.1, 1, 10, 100, 1000]). The accuracy of classifiers was evaluated using a leave-

one-out cross validation scheme. 

Classification accuracy in the second session after training was analysed by running a LME. 

In the analysis, we used logit transformed classification accuracies of the two ROIs (left AG 

and bilateral hippocampus) as depended variable (Baum, 2008). Fixed effects in the analysis 

were ROI (left AG and hippocampus), RT training effect (mean RT untrained – mean RT 



44 
 

trained) and ER training effect (mean logit transformed ER untrained – mean logit 

transformed ER trained) as well as the interactions between ROI and RT training effect and 

ROI and ER training effect. The categorical variable ROI was effect-coded and the 

continuous variables RT training effect and ER training effect were centred. Additionally, we 

included a random intercept for participants. 

Decoding results 

The intercept of the LME was significantly different from zero indicating that overall 

classification accuracy was above chance [log odds = 0.1986, SE = 0.0486, in % = 55.0%, 

t(31.99) = 4.14, p < .001]. However, we found no reliable difference in classification 

accuracies between both ROIs [t(31.99) = 1.25, p = .219]. Moreover, the LME revealed a 

main effect of the RT training effect [t(31.99) = 2.42, p = .021], but no significant main effect 

of the ER training effect [t(31.99) = -0.86, p = .395]. The significant RT training effect 

indicated that classification accuracy increased the larger the RT training effect (log odds = 

0.0004, SE = 0.0002, in % = 0.009% per ms; see also Figure A). Thus, when the training 

effect increased one second, classification accuracy increased 9%. Finally, we did not 

observe a reliable interaction between ROI and RT training effect as well as ROI and ER 

training effect [ts < 1.20, ps > .250]. 
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Figure A. Dependence of classification accuracy (in %) on the size of the training effect for response times 
(in ms). Dots indicate empirical classification accuracies and training effects of participants, the straight line 
the predicted accuracy and the dotted lines the 95% CI for the prediction of the individual participants’ 
classification accuracies. 

 

ANOVA for reaction times (RT) and error rates (ER) of the pre- and post-training session 

For readers who are not familiar with (G)LMEs, we report the results of conventional 

repeated measures ANOVAs, analysing the RT and ER data of the pre- and post-training 

fMRI session. 

 

RT data  

The ANOVAs on the RT data were separately conducted by participants (F1; i.e., RTs were 

average across items) and by items (F2; i.e., RTs were averaged across participants). P-

values of post-hoc tests were corrected for multiple testing employing the method suggested 

by Holm (1979). 

The analysis of the RT data revealed a significant interaction of item set and session [F1(1, 

31) = 78.89, p < .001; F2(1, 196) = 6.64, p = .01]. From the pre- to the post-training session 

the decrease in RT was more pronounced for the (to-be-)trained as compared to the 

untrained multiplication problems. Simple effects analyses revealed that mean RT for to-be-
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trained and untrained items differed in the post-training session [F1(1, 31) = 181.10, p < .001; 

F2(1, 98) = 11.99, p < .001] but not in the pre-training session [F1(1, 31) < 1, p = .978; F2(1, 

98) < 1, p = .981]. 

Further, we observed a significant main effect of the factor item set [F1(1, 31) = 60.84, p < 

.001; F2(1, 196) = 6.80, p = .01]: participants needed more time to solve untrained (3978 ms) 

than trained multiplication items (3624 ms). Additionally, a significant main effect of the factor 

session was observed [F1(1, 31) = 157.50, p < .001; F2(1, 196) = 17.15, p < .001] indicating 

that participants were significantly faster in selecting the correct solution probe in the post-

training (3368 ms) as compared to the pre-training session (4234 ms).  

ER data 

ANOVAs on ER data substantiated the results of the RT analysis. Participants tended to 

commit more errors when solving untrained than (to-be-)trained items [22% vs 20%; F1(1, 31) 

= 8.47, p = .007; F2(1, 196) = 6.26, p = .013]. Moreover, a highly significant main effect of 

session was observed [F1(1, 31) = 56.33, p < .001; F2(1, 196) = 31.77, p < .001] indicating 

that participants made significantly fewer errors after five sessions of multiplication training 

(11% vs. 32%). Finally, a significant interaction of item-set and session was observed [F1(1, 

31) = 11.78, p = .002; F2(1, 196) = 2,01 p = .158], corroborating the findings of the RT 

analysis. Finally, applying the F1 × F2 criterion (e.g., Forster & Dickinson, 1976) we did not 

observe a significant interaction of item-set and session [F1(1, 31) = 11.78, p = .002; F2(1, 

196) = 2,01 p = .158]. This finding differed from the results using GLME (see main article). 

However, ANOVAs are not well suited for analysing binary data because running ANOVAs 

for percentages (ER analysis) instead of GLME with binomial error distribution results in 

spurious effects (Jaeger, 2008). Consequently, this finding should not be interpreted.  

 

In sum, the results from RT and ER data provide evidence that participants’ multiplication 

problem-solving skills improved significantly after five sessions of extensive training. 



47 
 

References 

 

Baum, C. F. (2008). Modeling proportions. Stata Journal, 8(2), 299-303.  

Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM 
Transactions on Intelligent Systems and Technology (TIST), 2(3), 27. 

Eickhoff, S. B., Heim, S., Zilles, K., & Amunts, K. (2006). Testing anatomically specified 
hypotheses in functional imaging using cytoarchitectonic maps. NeuroImage, 32(2), 
570–582. doi:10.1016/j.neuroimage.2006.04.204 

Eickhoff, S. B., Paus, T., Caspers, S., Grosbras, M. H., Evans, A. C., Zilles, K., & Amunts, K. 
(2007). Assignment of functional activations to probabilistic cytoarchitectonic areas 
revisited. NeuroImage, 36(3), 511–521. doi:10.1016/j.neuroimage.2007.03.060 

Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, 
K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and 
functional imaging data. NeuroImage, 25(4), 1325–1335. 
doi:10.1016/j.neuroimage.2004.12.034 

Forster, K., & Dickinson, R. (1976). More on the language-as-fixed-effect fallacy: Monte 
Carlo estimates of error rates for F1, F2, F0 , and min F0. Journal of Verbal Learning and 
Verbal Behavior, 15, 135–142. 

Hebart, M. N., Görgen, K., & Haynes, J. D. (2014). The Decoding Toolbox (TDT): a versatile 
software package for multivariate analyses of functional imaging data. Frontiers in 
neuroinformatics, 8. 

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian 
Journal of Statistics, 6(2), 65–70. doi:10.2307/4615733 

Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) 
and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446. 
doi:10.1016/j.jml.2007.11.007 

Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolving BOLD 
activation in event-related designs for multivoxel pattern classification analyses. 
NeuroImage, 59(3), 2636-2643. 

 


