145 research outputs found

    Explicating the challenges of providing novel media experiences driven by user personal data

    Get PDF
    The turn towards personal data to drive novel media experiences has resulted in a shift in the priorities and challenges associated with media creation and dissemination. This paper takes up the challenge of explicating this novel and dynamic scenario through an interview study of employees delivering diverse personal data driven media services within a large U.K. based media organisation. The results identify a need for better interactions in the user-data-service ecosystem where trust and value are prioritised and balanced. Being legally compliant and going beyond just the mandatory to further ensure social accountability and ethical responsibility as an organisation are unpacked as methods to achieve this balance in data centric interactions. The work also presents how technology is seen and used as a solution for overcoming challenges and realising priorities to provide value while preserving trust within the personal data ecosystem

    Solid-State Dynamic Nuclear Polarization at 263 GHz: Spectrometer Design and Experimental Results

    Get PDF
    Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period.National Institutes of Health (U.S.) (NIH grant EB-002804)National Institutes of Health (U.S.) (NIH grant EB-002026

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p &lt; 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p

    Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity

    Get PDF
    The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox\textit{phox} and p22phox\textit{phox} subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643\textit{bc017643}, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox\textit{phox} and p22phox\textit{phox}. Consequently, Eros\textit{Eros}-deficient mice quickly succumb to infection. Eros\textit{Eros} also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros\textit{Eros} is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense.D.C. Thomas was funded by a Wellcome Trust/CIMR Next Generation Fellowship, a National Institute for Health Research (NIHR) Clinical Lectureship, and a Starter Grant for Clinical Lecturers (Academy of Medical Sciences). K.G.C. Smith was funded by funded by the Medical Research Council (program grant MR/L019027) and is a Wellcome Investigator and a NIHR Senior Investigator. S. Clare and G. Dougan were funded by the Wellcome Trust (grant 098051). The Cambridge Institute for Medical Research is in receipt of a Wellcome Trust Strategic Award (079895). J.C.L is funded by a Wellcome Intermediate Clinical Fellowship 105920/2/14/2

    Americans, Marketers, and the Internet: 1999-2012

    Full text link
    corecore