128 research outputs found

    Extended Magnetic Dome Induced by Low Pressures in Superconducting FeSe1-x_\mathrm{1\text{-}x}Sx_\mathrm{x}

    Full text link
    We report muon spin rotation (μ\muSR) and magnetization measurements under pressure on Fe1+δ_{1+\delta}Se1-x_\mathrm{1\text{-}x}Sx_\mathrm{x} with x 0.11\approx 0.11.Above p0.6p\approx0.6 GPa we find microscopic coexistence of superconductivity with an extended dome of long range magnetic order that spans a pressure range between previously reported separated magnetic phases. The magnetism initially competes on an atomic scale with the coexisting superconductivity leading to a local maximum and minimum of the superconducting Tc(p)T_\mathrm{c}(p). The maximum of TcT_\mathrm{c} corresponds to the onset of magnetism while the minimum coincides with the pressure of strongest competition. A shift of the maximum of Tc(p)T_\mathrm{c}(p) for a series of single crystals with x up to 0.14 roughly extrapolates to a putative magnetic and superconducting state at ambient pressure for x 0.2\geq0.2.Comment: 10 pages, 6 figures, including supplemental materia

    Gradual Enhancement of Stripe-Type Antiferromagnetism in Spin Ladder Material BaFe2_2S3_3 Under Pressure

    Full text link
    We report pressure-dependent neutron diffraction and muon spin relaxation/rotation measurements combined with first-principles calculations to investigate the structural, magnetic, and electronic properties of BaFe2_2S3_3 under pressure. The experimental results reveal a gradual enhancement of the stripe-type ordering temperature with increasing pressure up to 2.6 GPa and no observable change in the size of the ordered moment. The ab initio calculations suggest that the magnetism is highly sensitive to the Fe-S bond lengths and angles, clarifying discrepancies with previously published results. In contrast to our experimental observations, the calculations predict a monotonic reduction of the ordered moment with pressure. We suggest that the robustness of the stripe-type antiferromagnetism is due to strong electron correlations not fully considered in the calculations

    Universal fluctuating regime in triangular chromate antiferromagnets

    Full text link
    We report x-ray diffraction, magnetic susceptibility, heat capacity, 1^{1}H nuclear magnetic resonance (NMR), and muon spin relaxation (μ\muSR) measurements, as well as density-functional band-structure calculations for the frustrated S=3/2S=3/2 triangular lattice Heisenberg antiferromagnet (TLHAF) α\alpha-HCrO2_{2} (trigonal, space group: R3ˉmR\bar{3}m). This compound undergoes a clear magnetic transition at TN22.5T_{\rm N} \simeq 22.5~K, as seen from the drop in the muon paramagnetic fraction and concurrent anomalies in the magnetic susceptibility and specific heat. Local probes (NMR and μ\muSR) reveal a broad regime with slow fluctuations down to 0.7TN0.7\,T_{\rm N}, this temperature corresponding to the maximum in the μ\muSR relaxation rate and in the NMR wipe-out. From the comparison with NaCrO2_{2} and α\alpha-KCrO2_{2}, the fluctuating regime and slow dynamics below TNT_{\rm N} appear to be hallmarks of the TLHAF with ABCABC stacking that leads to a frustration of interlayer couplings between the triangular planes. This interlayer frustration is a powerful lever to generate spin states with persistent dynamics and may bear implications to spin-liquid candidates with the triangular geometry.Comment: 14 pages, 11 figures, 2 table

    Disordered ground state in the spin-orbit coupled Jeff = 1/2 distorted honeycomb magnet BiYbGeO5

    Get PDF
    We delineate quantum magnetism in the strongly spin-orbit coupled distorted honeycomb lattice antiferromagnet BiYbGeO5. Our magnetization and heat capacity measurements reveal that its low-temperature behavior is well described by an effective Jeff=12 Kramers doublet of Yb3+. The ground state is nonmagnetic with a tiny spin gap. Temperature-dependent magnetic susceptibility, magnetization isotherm, and heat capacity can be modeled well assuming isolated spin dimers with anisotropic exchange interactions JZ≃2.6 K and JXY≃1.3 K. Heat capacity measurements backed by muon spin relaxation suggest the absence of magnetic long-range order down to at least 80 mK both in zero field and in applied fields. This sets BiYbGeO5 apart from Yb2Si2O7, with its unusual regime of magnon Bose-Einstein condensation, and suggests negligible interdimer couplings, despite only a weak structural deformation of the honeycomb lattice

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Engineering phase competition between stripe order and superconductivity in La1.88_{1.88}Sr0.12_{0.12}CuO4_4

    Get PDF
    Unconventional superconductivity often couples to other electronic orders in a cooperative or competing fashion. Identifying external stimuli that tune between these two limits is of fundamental interest. Here, we show that strain perpendicular to the copper-oxide planes couples directly to the competing interaction between charge stripe order and superconductivity in La1.88_{1.88}Sr0.12_{0.12}CuO4_{4} (LSCO). Compressive c-axis pressure amplifies stripe order within the superconducting state, while having no impact on the normal state. By contrast, strain dramatically diminishes the magnetic field enhancement of stripe order in the superconducting state. These results suggest that c-axis strain acts as tuning parameter of the competing interaction between charge stripe order and superconductivity. This interpretation implies a uniaxial pressure-induced ground state in which the competition between charge order and superconductivity is reduced

    Robust block magnetism in the spin ladder compound BaFe2_2Se3_3 under hydrostatic pressure

    Get PDF
    The majority of the iron-based superconductors (FeSCs) exhibit a two-dimensional square lattice structure. Recent reports of pressure-induced superconductivity in the spin-ladder system, BaFe2_2X3_3 (X =S,Se), introduce a quasi-one-dimensional prototype and an insulating parent compound to the FeSCs. Here we report X-ray, neutron diffraction and muon spin relaxation experiments on BaFe2_2Se3_3 under hydrostatic pressure to investigate its magnetic and structural properties across the pressure-temperature phase diagram. A structural phase transition was identified at a pressure of 3.7(3) GPa. Neutron diffraction measurements at 6.8(3) GPa and 120 K show that the block magnetism persists even at these high pressures. A steady increase and then fast drop of the magnetic transition temperature TNT\rm_N and greatly reduced moment above the pressure PsP_s indicate potentially rich and competing phases close to the superconducting phase in this ladder system
    corecore