187 research outputs found

    Superfluid Friction and Late-time Thermal Evolution of Neutron Stars

    Get PDF
    The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of 3×1063\times 10^6 and 2×1072\times 10^7 yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of ωˉ∼0.6\bar\omega\sim 0.6 rad s−1^{-1} for PSR 1929+10 and ∼0.02\sim 0.02 rad s−1^{-1} for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by pinning of superfluid vortices to the inner crust lattice with strengths of ∼\sim 1 MeV per nucleus. Pinned vortices can creep outward through thermal fluctuations or quantum tunneling. For thermally-activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rotation (∼10\sim 10 rad s−1^{-1}), a feedback instability could occur in stars younger than ∼105\sim 10^5 yr causing oscillations of the temperature and spin-down rate over a period of ∼0.3tage\sim 0.3 t_{\rm age}. For stars older than ∼106\sim 10^6 yr, however, vortex creep occurs through quantum tunneling, and the creep velocity is too insensitive to temperature for a thermal-rotational instability to occur. These older stars could be heated through a steady process of superfluid friction.Comment: 26 pages, 1 figure, submitted to Ap

    THERMAL RADIATION FROM MAGNETIZED NEUTRON STARS: A look at the Surface of a Neutron Star.

    Full text link
    Surface thermal emission has been detected by ROSAT from four nearby young neutron stars. Assuming black body emission, the significant pulsations of the observed light curves can be interpreted as due to large surface temperature differences produced by the effect of the crustal magnetic field on the flow of heat from the hot interior toward the cooler surface. However, the energy dependence of the modulation observed in Geminga is incompatible with blackbody emission: this effect will give us a strong constraint on models of the neutron star surface.Comment: 10 pages. tar-compressed and uuencoded postcript file. talk given at the `Jubilee Gamow Seminar', St. Petersburg, Sept. 1994

    Quasi-periodic X-ray brightness fluctuations in an accreting millisecond pulsar

    Full text link
    The relativistic plasma flows onto neutron stars that are accreting material from stellar companions can be used to probe strong-field gravity as well as the physical conditions in the supranuclear-density interiors of neutron stars. Plasma inhomogeneities orbiting a few kilometres above the stars are observable as X-ray brightness fluctuations on the millisecond dynamical timescale of the flows. Two frequencies in the kilohertz range dominate these fluctuations: the twin kilohertz quasi-periodic oscillations (kHz QPOs). Competing models for the origins of these oscillations (based on orbital motions) all predict that they should be related to the stellar spin frequency, but tests have been difficult because the spins were not unambiguously known. Here we report the detection of kHz QPOs from a pulsar whose spin frequency is known. Our measurements establish a clear link between kHz QPOs and stellar spin, but one not predicted by any current model. A new approach to understanding kHz QPOs is now required. We suggest that a resonance between the spin and general relativistic orbital and epicyclic frequencies could provide the observed relation between QPOs and spin.Comment: Published in the 2003 July 3 issue of Natur

    Gravitational waves from rapidly rotating neutron stars

    Full text link
    Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of B≈1012B\approx 10^{12} G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the accretion torque in these systems, and show that in most cases the disc/magnetosphere interaction can account for the observed spin periods.Comment: To appear in 'Gravitational Waves Astrophysics: 3rd Session of the Sant Cugat Forum on Astrophysics, 2014', Editor: Carlos F. Sopuert

    The X-ray fast-time variability of Sco X-2 (GX 349+2) with RXTE

    Get PDF
    Sco X-2 (GX 349+2) is a low-mass X-ray binary and Z source. We have analysed 156 ks of Rossi X-ray Timing Explorer data, obtained in 1998 January, on this source. We investigated the fast-time variability as a function of position on the Z track. During these observations, Sco X-2 traced out the most extensive Z track ever reported from this object, making this the most comprehensive study thus far. We found the broad peaked flaring branch noise that is typical of Sco X-2, with a centroid frequency in the range 3.3--5.8 Hz. We also discovered low frequency noise, and a new peaked noise feature, with centroid frequencies in the range 5.4--7.6 Hz and 11--54 Hz, respectively. We discuss the phenomenology of these features, their relationship with the power spectral components found in other low-mass X-ray binaries, and the implications for current models. In particular, the low frequency noise we observed was strongest at intermediate energies, in contrast to the low frequency noise seen in other Z sources. We also detected very low frequency noise, and have calculated complex cross spectra between intensity and hardness. We found that the very low frequency noise is not entirely due to motion along the Z track.Comment: 17 pages, 9 figures, minor improvements, accepted for publication in MNRA

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    Accreting Neutron Stars in Low-Mass X-Ray Binary Systems

    Full text link
    Using the Rossi X-ray Timing Explorer (RossiXTE), astronomers have discovered that disk-accreting neutron stars with weak magnetic fields produce three distinct types of high-frequency X-ray oscillations. These oscillations are powered by release of the binding energy of matter falling into the strong gravitational field of the star or by the sudden nuclear burning of matter that has accumulated in the outermost layers of the star. The frequencies of the oscillations reflect the orbital frequencies of gas deep in the gravitational field of the star and/or the spin frequency of the star. These oscillations can therefore be used to explore fundamental physics, such as strong-field gravity and the properties of matter under extreme conditions, and important astrophysical questions, such as the formation and evolution of millisecond pulsars. Observations using RossiXTE have shown that some two dozen neutron stars in low-mass X-ray binary systems have the spin rates and magnetic fields required to become millisecond radio-emitting pulsars when accretion ceases, but that few have spin rates above about 600 Hz. The properties of these stars show that the paucity of spin rates greater than 600 Hz is due in part to the magnetic braking component of the accretion torque and to the limited amount of angular momentum that can be accreted in such systems. Further study will show whether braking by gravitational radiation is also a factor. Analysis of the kilohertz oscillations has provided the first evidence for the existence of the innermost stable circular orbit around dense relativistic stars that is predicted by strong-field general relativity. It has also greatly narrowed the possible descriptions of ultradense matter.Comment: 22 pages, 7 figures, updated list of sources and references, to appear in "Short-period Binary Stars: Observation, Analyses, and Results", eds. E.F. Milone, D.A. Leahy, and D. Hobill (Dordrecht: Springer, http://www.springerlink.com

    Populating the Galaxy with pulsars I: stellar & binary evolution

    Full text link
    The computation of theoretical pulsar populations has been a major component of pulsar studies since the 1970s. However, the majority of pulsar population synthesis has only regarded isolated pulsar evolution. Those that have examined pulsar evolution within binary systems tend to either treat binary evolution poorly or evolve the pulsar population in an ad-hoc manner. Thus no complete and direct comparison with observations of the pulsar population within the Galactic disk has been possible to date. Described here is the first component of what will be a complete synthetic pulsar population survey code. This component is used to evolve both isolated and binary pulsars. Synthetic observational surveys can then be performed on this population for a variety of radio telescopes. The final tool used for completing this work will be a code comprised of three components: stellar/binary evolution, Galactic kinematics and survey selection effects. Results provided here support the need for further (apparent) pulsar magnetic field decay during accretion, while they conversely suggest the need for a re-evaluation of the assumed \textit{typical} MSP formation process. Results also focus on reproducing the observed PP˙P\dot{P} diagram for Galactic pulsars and how this precludes short timescales for standard pulsar exponential magnetic field decay. Finally, comparisons of bulk pulsar population characteristics are made to observations displaying the predictive power of this code, while we also show that under standard binary evolutionary assumption binary pulsars may accrete much mass.Comment: 26 pages, 16 figures, 1 table, accepted for publication in MNRA

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-
    • …
    corecore