Sco X-2 (GX 349+2) is a low-mass X-ray binary and Z source. We have analysed
156 ks of Rossi X-ray Timing Explorer data, obtained in 1998 January, on this
source. We investigated the fast-time variability as a function of position on
the Z track. During these observations, Sco X-2 traced out the most extensive Z
track ever reported from this object, making this the most comprehensive study
thus far. We found the broad peaked flaring branch noise that is typical of Sco
X-2, with a centroid frequency in the range 3.3--5.8 Hz. We also discovered low
frequency noise, and a new peaked noise feature, with centroid frequencies in
the range 5.4--7.6 Hz and 11--54 Hz, respectively. We discuss the phenomenology
of these features, their relationship with the power spectral components found
in other low-mass X-ray binaries, and the implications for current models. In
particular, the low frequency noise we observed was strongest at intermediate
energies, in contrast to the low frequency noise seen in other Z sources. We
also detected very low frequency noise, and have calculated complex cross
spectra between intensity and hardness. We found that the very low frequency
noise is not entirely due to motion along the Z track.Comment: 17 pages, 9 figures, minor improvements, accepted for publication in
MNRA