121 research outputs found

    Dampak Banjir Air Pasang terhadap Kerusakan Lahan Komoditas Perkebunan dan Pendapatan Petani di Kecamatan Kuala Indragiri Kabupaten Indragi Hilir

    Full text link
    The research was conducted in the district of Kuala Indragiri Hilir Indragiri. The purpose of this study was to determine the impact of land degradation commodities due to tidal flooding and to determine the impact of the flood tide of the income of farmers before and after the flood tide.This study uses a random cluster sampling technique then selected 44 samples. The data used in this research is the primary data and secondary data. Methods of data analysis used in this research is descriptive qualitative and quantitative, qualitative descriptive method done by describing the whole object of research. While descriptive Quantitative namely by displaying a model that systematically as Test Sign (Sign Test). From the research results show that land Plantation Commodity Harm Due Bnjir tide causing losses to farmers. land becomes waterlogged Indragiri River is saltwater. The salt water affect the fruit of his commodities more and shrink, the trunk becomes brittle because of the flood tide is finally easy to fall, the leaves dry out, the land becomes narrower as the tide flooded. muddy plantation land when the floods recede From the research test pins (Sign Test) that Zhitung value smaller than the value Ztabel namely (-6.67 <1.64), which means that H0 is accepted and Ha rejected, which explains that the tide effect on revenue farmers

    Interfacial reaction analysis of Sn-Ag-Cu solder reinforced with 0.01wt% CNTs with isothermal aging

    Get PDF
    This study focused on the formation and growth of intermetallic compound (IMC) layer at the interfaces of pad finishes. The thickness of IMC layer, wetting angle, and defects such as floating IMC and voids formation after as reflow and isothermal aging were discussed. In this study, SAC237 (Sn: 99 wt.%, Ag: 0.3 wt.%, Cu: 0.7wt.%) reinforced with 0.01 wt.% of Multi-Walled Carbon Nanotubes (MWCNTs) were soldered on Electroless Nickel Immersion Gold (ENIG) and Immersion Tin (ImSn) pad finishes. Isothermal aging at 150°C for 400h, 800h, and 1200h were conducted after as reflow process. The IMC layer were analysed using optical microscope with image analyzer. The results shows the thickness of IMC layer for both ENIG and ImSn increased as the isothermal aging period increases. The increament was found from 1.49 μm to 1.73 μm for ENIG and 2.51 μm to 5.49 μm for ImSn. Floating IMC and voids formation were also observed on both pad finishes. Wetting angle for ENIG and ImSn varied from 16.21° to 36.85° and 24.27° to 34.41° respectively

    Mutual Coupling Reduction in Antenna Using EBG on Double Substrate

    Get PDF
    In this paper, a mutual coupling studies is conducted between two-element array antenna on dual substrate. A single patch antenna is firstly designed on dual substrate layer to testify appropriate performance at 2.45 GHz. Subsequently, an array of two element patches on dual substrate are constructed with one of them is incorporated with three EBG unit cell on the bottom substrate. The radiating patch is on the top substrate, while the EBG unit cells is on the bottom substrate. With EBGs in separate layers from the antenna array, the antenna elements are closely separated by a distance of 22 mm with a significant reduced mutual coupling of -26.61 dB. This correspond to a distance reduction of 34.68%. The proposed structure implemented only three EBG unit cells. Apart from that, the study of overlapped case of EBG with the antenna is also presented

    Dual Band to Wideband Pentagon-shaped Patch Antenna with Frequency Reconfigurability using EBGs

    Get PDF
    A dual band to wideband reconfigurable pentagon-shaped antenna with EBG unit cell is proposed. A minimal number of two EBG unit cell is deployed to realize frequency reconfigurable mechanism.  By varying the state of the EBG the antenna is capable to change its dual band operation to wideband alternately. There are three cases that have been analysed, first case is the EBG incorporated antenna with ideal and second is with the active EBG. Subsequently, the third cases is the fabricated ideal EBG incorporated antenna. The dual band operation is at 1.8 GHz and 5.2 GHz while the wide band from 1.6 GHz to 2.37 GHz (770 MHz). The proposed reconfigurable antenna is suitable to be implemented for LTE (1.6 GHz), Wi-Fi (5.2 GHz), WiMAX (2.3 GHz) and cognitive radio application

    Thermal Behavior of Benzoic Acid/lsonicotinamide Binary Cocrystals

    Get PDF
    A comprehensive study of the thermal behavior of the 1:1 and 2:1 benzoic acid/isonicotinamide cocrystals is reported. The 1:1 material shows a simple unit cell expansion followed by melting upon heating. The 2:1 crystal exhibits more complex behavior. Its unit cell first expands upon heating, as a result of C–H···π interactions being lengthened. It then is converted into the 1:1 crystal, as demonstrated by significant changes in its X-ray diffraction pattern. The loss of 1 equiv of benzoic acid is confirmed by thermogravimetric analysis–mass spectrometry. Hot stage microscopy confirms that, as intuitively expected, the transformation begins at the crystal surface. The temperature at which conversion occurs is highly dependent on the sample mass and geometry, being reduced when the sample is under a gas flow or has a greater exposed surface area but increased when the heating rate is elevated

    From moral hazard to risk-response feedback

    Get PDF
    The Intergovernmental Panel on Climate Change assessments (IPCC) Special Report on 1.5 °C of global warming is clear. Nearly all pathways that hold global warming well below 2 °C involve carbon removal (IPCC, 2015). In addition, solar geoengineering is being considered as a potential tool to offset warming, especially to limit temperature until negative emissions technologies are sufficiently matured (MacMartin et al., 2018). Despite this, there has been a reluctance to embrace carbon removal and solar geoengineering, partly due to the perception that these technologies represent what is widely termed a “moral hazard”: that geoengineering will prevent people from developing the will to change their personal consumption and push for changes in infrastructure (Robock et al., 2010), erode political will for emissions cuts (Keith, 2007), or otherwise stimulate increased carbon emissions at the social-system level of analysis (Bunzl, 2008). These debates over carbon removal and geoengineering echo earlier ones over climate adaptation. We argue that debates over “moral hazard” in many areas of climate policy are unhelpful and misleading. We also propose an alternative framework for dealing with the tradeoffs that motivate the appeal to “moral hazard,” which we call “risk-response feedback.

    Self-Affirmation and Identity-Driven Political Behavior

    Get PDF
    This is the author accepted manuscript. The final version is available from Cambridge University Press via the DOI in this recordData availability: The data, code, and any additional materials required to replicate all analyses in this article are available at the Journal of Experimental Political Science Dataverse within the Harvard Dataverse Network, at: doi:10.7910/DVN/HUJZMOPsychological attachment to political parties can bias people’s attitudes, beliefs, and group evaluations. Studies from psychology suggest that self-affirmation theory may ameliorate this problem in the domain of politics on a variety of outcome measures. We report a series of studies conducted by separate research teams that examine whether a self-affirmation intervention affects a variety of outcomes, including political or policy attitudes, factual beliefs, conspiracy beliefs, affective polarization, and evaluations of news sources. The different research teams use a variety of self-affirmation interventions, research designs, and outcomes. Despite these differences, the research teams consistently find that self-affirmation treatments have little effect. These findings suggest considerable caution is warranted for researchers who wish to apply the self-affirmation framework to studies that investigate political attitudes and beliefs. By presenting the “null results” of separate research teams, we hope to spark a discussion about whether and how the self-affirmation paradigm should be applied to political topics.European Union Horizon 2020NASAEnergy FoundationUniversity of MinnesotaNational Science Foundation (NSF

    Mapping of a N-terminal α-helix domain required for human PINK1 stabilization, Serine228 autophosphorylation and activation in cells.

    Get PDF
    Autosomal recessive mutations in the PINK1 gene are causal for Parkinson's disease (PD). PINK1 encodes a mitochondrial localized protein kinase that is a master-regulator of mitochondrial quality control pathways. Structural studies to date have elaborated the mechanism of how mutations located within the kinase domain disrupt PINK1 function; however, the molecular mechanism of PINK1 mutations located upstream and downstream of the kinase domain is unknown. We have employed mutagenesis studies to define the minimal region of human PINK1 required for optimal ubiquitin phosphorylation, beginning at residue Ile111. Inspection of the AlphaFold human PINK1 structure model predicts a conserved N-terminal α-helical extension (NTE) domain forming an intramolecular interaction with the C-terminal extension (CTE), which we corroborate using hydrogen/deuterium exchange mass spectrometry of recombinant insect PINK1 protein. Cell-based analysis of human PINK1 reveals that PD-associated mutations (e.g. Q126P), located within the NTE : CTE interface, markedly inhibit stabilization of PINK1; autophosphorylation at Serine228 (Ser228) and Ubiquitin Serine65 (Ser65) phosphorylation. Furthermore, we provide evidence that NTE and CTE domain mutants disrupt PINK1 stabilization at the mitochondrial Translocase of outer membrane complex. The clinical relevance of our findings is supported by the demonstration of defective stabilization and activation of endogenous PINK1 in human fibroblasts of a patient with early-onset PD due to homozygous PINK1 Q126P mutations. Overall, we define a functional role of the NTE : CTE interface towards PINK1 stabilization and activation and show that loss of NTE : CTE interactions is a major mechanism of PINK1-associated mutations linked to PD
    corecore