46 research outputs found

    Forage allowances offered to pregnant ewes until middle and late gestation: Organ priorities on foetus development

    Get PDF
    Effect of forage allowance before conception and until mid or late gestation was evaluated for effects on foetal and neonatal weights, carcass, nervous systems, metabolic and reproductive organ weights, body dimensions, and variation in intensity of the effects among organs. Effects of two forage allowances, HFA: high forage allowance (2.9 - 3.8 kg of dry matter (DM)/kg bodyweight (BW)) and LFA: low forage allowance (1.4 - 2.6 kg DM/kg BW) were evaluated from 23 days before conception until 70 or 122 days postpartum. On gestation day 70, nine ewes per treatment, each carrying one male foetus, were euthanized and their foetuses were removed. The foetuses were weighed, their carcass and organ weights were recorded, and their external genitalia dimensions were measured. Nine additional lambs per treatment were euthanized 12 hours after birth and the same data were recorded. Hearts from day 70 LFA foetuses were lighter, their external genitalia were smaller, and their foetal weight tended to be less than in HFA. Newborn lambs from LFA ewes had lighter carcasses, livers, kidneys, adrenal glands and testes, shorter penises, but higher brain to liver weight ratios than in HFA. The cerebellum, brain, and heart weights of LFA and HFA newborn lambs did not differ. Low forage allowance until late gestation influenced both foetal and lamb weights and affected organ weights differentially. Thus, the treatments induced differences in prioritization of nutrients, with the central nervous system receiving the highest priority, and carcass and external genitalia the lowest. Keywords: foetal programming, intrauterine growth restriction, lambs, undernutritio

    Numerical simulation of thin layer coffee drying by control volumes

    Get PDF
    The thin layer drying model proposed by Sokhansanj and Bruce (1987) was implemented to model the drying process of parchment coffee beans. A computational model based on a control volume approach was developed to simulate the drying process of parchment coffee. A one dimensional transient analysis was implemented in the radial direction applied to a spherical coffee bean of equivalent radius. The results found that, even though the numerical value for the mass transfer coefficient is a small number (about of 10⁷ m/sec), moisture content predictions were sensitive to this value. The predicted drying curve compared favorably with published results

    Urinary Aminopeptidase Activities as Early and Predictive Biomarkers of Renal Dysfunction in Cisplatin-Treated Rats

    Get PDF
    This study analyzes the fluorimetric determination of alanyl- (Ala), glutamyl- (Glu), leucyl-cystinyl- (Cys) and aspartyl-aminopeptidase (AspAp) urinary enzymatic activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. Male Wistar rats (n = 8 each group) received a single subcutaneous injection of either saline or cisplatin 3.5 or 7 mg/kg, and urine samples were taken at 0, 1, 2, 3 and 14 days after treatment. In urine samples we determined Ala, Glu, Cys and AspAp activities, proteinuria, N-acetyl-β-D-glucosaminidase (NAG), albumin, and neutrophil gelatinase-associated lipocalin (NGAL). Plasma creatinine, creatinine clearance and renal morphological variables were measured at the end of the experiment. CysAp, NAG and albumin were increased 48 hours after treatment in the cisplatin 3.5 mg/kg treated group. At 24 hours, all urinary aminopeptidase activities and albuminuria were significantly increased in the cisplatin 7 mg/kg treated group. Aminopeptidase urinary activities correlated (p0.259) with plasma creatinine, creatinine clearance and/or kidney weight/body weight ratio at the end of the experiment and they could be considered as predictive biomarkers of renal injury severity. ROC-AUC analysis was made to study their sensitivity and specificity to distinguish between treated and untreated rats at day 1. All aminopeptidase activities showed an AUC>0.633. We conclude that Ala, Cys, Glu and AspAp enzymatic activities are early and predictive urinary biomarkers of the renal dysfunction induced by cisplatin. These determinations can be very useful in the prognostic and diagnostic of renal dysfunction in preclinical research and clinical practice.This study was supported by a grant (R1/12/2010/66) from the University of Jaén with the participation of Caja Rural of Jaén, and from the Carlos III Health Institute of the Spanish Ministry of Health and Consumer Affairs (Red de Investigación Renal, REDinREN RD06/0016/0017 and RD07/0016/2008), “FEDER una manera de hacer Europa.

    The HEV Ventilator

    Full text link
    HEV is a low-cost, versatile, high-quality ventilator, which has been designed in response to the COVID-19 pandemic. The ventilator is intended to be used both in and out of hospital intensive care units, and for both invasive and non-invasive ventilation. The hardware can be complemented with an external turbine for use in regions where compressed air supplies are not reliably available. The standard modes provided include PC-A/C(Pressure Assist Control),PC-A/C-PRVC(Pressure Regulated Volume Control), PC-PSV (Pressure Support Ventilation) and CPAP (Continuous Positive airway pressure). HEV is designed to support remote training and post market surveillance via a web interface and data logging to complement the standard touch screen operation, making it suitable for a wide range of geographical deployment. The HEV design places emphasis on the quality of the pressure curves and the reactivity of the trigger, delivering a global performance which will be applicable to ventilator needs beyond theCOVID-19 pandemic. This article describes the conceptual design and presents the prototype units together with their performance evaluation.Comment: 34 pages, 18 figures, Extended version of the article submitted to PNA

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the νe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(Eν)\sigma(E_\nu) for charged-current νe\nu_e absorption on argon. In the context of a simulated extraction of supernova νe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(Eν)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(Eν)\sigma(E_\nu) must be substantially reduced before the νe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(Eν)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(Eν)\sigma(E_\nu). A direct measurement of low-energy νe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Perspectives in the design and development of new products for enteral nutrition.

    No full text
    Enteral nutrition is a technique that even though it was used in times immemorial, in the last 25 years has suffered a considerable development, from being considered a secondary therapeutic weapon destined only to feed the patient, to occupying an important status that goes beyond the single act of nourishing. The quantitative composition but overall the qualitative one, is object of an interesting argument in which a profile allowing the modulation of certain aspects of the organism response through the supplementation with different nutrients is searched. That includes from the keeping of the intestinal trophism and of the anti-bacteria intestinal barrier, so important to avoid the frightening multiple organ dysfunction, up to the lessening of the Systemic Response Inflammatory Syndrome (SRIS), going through the immuno-modulative feeding concepts, specific-feeding, pharmaco-nutrient or eco-nutrition. In this new dynamic not only certain nutrients such as glutamine, arginine, nucleotides, omega-3 fatty acids and many antioxidants have acquired importance, but also the manipulation of other molecules of a non- nutritional nature, such as hormones, cytokines and blockers. These aspects that imply passionate ways of investigation for the future are born from the better knowledge that is being acquired from such a severe pathophysiology processes such as sepsis and the organism response before fast and severe aggression; therefore, the modulation of that response through changes in the quantitative and qualitative formulas composition is being attempted.YesLa Nutrición Enteral es una técnica que aunque utilizada desde tiempos inmemoriales, ha sido en los últimos 25 años cuando ha experimentado un desarrollo considerable, pasando de ser un elemento terapéutico secundario, destinado exclusivamente a alimentar al paciente, a ocupar en la actualidad un papel importante que va mucho más allá del simple acto de nutrir. La composición cuantitativa pero sobre todo la cualitativa, es objeto de un interesante debate en el que se busca un perfil que permita modular determinados aspectos de la respuesta del organismo mediante el enriquecimiento con distintos nutrientes. Ello incluye desde el mantenimiento del trofismo intestinal y de la “barrera intestinal” antibacteriana, tan importante para prevenir el temido fracaso multiórgánico, hasta la atenuación del Síndrome de la Respuesta Inflamatoria Sistémica, pasando por los conceptos de alimentación inmunomoduladora, alimentación organoespecífica, farmaconutrientes o econutrición. En ésta nueva dinámica han adquirido importancia determinados nutrientes como la glutamina, arginina, nucleótidos, ácidos grasos de la serie ω-3 y antioxidantes diversos, así como la manipulación de otras moléculas de naturaleza no nutricional, como hormonas, factores de crecimiento, citoquinas y bloqueantes. Estos aspectos que suponen para el futuro unas apasionantes vías de investigación, nacen del mejor conocimiento que se va teniendo de la fisiopatología de procesos tan graves como la sepsis, y de la reacción del organismo ante el ayuno y la agresión grave, de modo que se está intentando modular dicha respuesta a través de cambios en la composición cuantitativa y cualitativa de las fórmula

    Numerical simulation of thin layer coffee drying by control volumes

    No full text
    The thin layer drying model proposed by Sokhansanj and Bruce (1987) was implemented to model the drying process of parchment coffee beans. A computational model based on a control volume approach was developed to simulate the drying process of parchment coffee. A one dimensional transient analysis was implemented in the radial direction applied to a spherical coffee bean of equivalent radius. The results found that, even though the numerical value for the mass transfer coefficient is a small number (about of 10 7 m/sec), moisture content predictions were sensitive to this value. The predicted drying curve compared favorably with published resultsEl modelo de secado en capa delgada desarrollado por Sokhansanj y Bruce (1987) fue implementado para simular el secado de un grano de café pergamino. El modelo computacional fue definido en estado transitorio y unidimensional para una esfera de radio equivalente utilizando la técnica del volumen de control. Los resultados indicaron que el valor numérico del coeficiente de transferencia de masa es muy pequeño (orden de magnitud alrededor de 10 7 m/s)haciendo que la predicción del contenido de humedad sea muy sensible a este valor. Además, los resultados de la simulación mostraron que la predicción del modelo numérico fue favorablemente similar a los datos experimentales dados en la literatur
    corecore