581 research outputs found

    Rationale for UV-filtered clover fermions

    Full text link
    We study the contributions Sigma_0 and Sigma_1, proportional to a^0 and a^1, to the fermion self-energy in Wilson's formulation of lattice QCD with UV-filtering in the fermion action. We derive results for m_{crit} and the renormalization factors Z_S, Z_P, Z_V, Z_A to 1-loop order in perturbation theory for several filtering recipes (APE, HYP, EXP, HEX), both with and without a clover term. The perturbative series is much better behaved with filtering, in particular tadpole resummation proves irrelevant. Our non-perturbative data for m_{crit} and Z_A/(Z_m*Z_P) show that the combination of filtering and clover improvement efficiently reduces the amount of chiral symmetry breaking -- we find residual masses am_{res}=O(10^{-2}).Comment: 25 pages, 4 figures; v2: typo in eqn. (37) fixed [agrees with published version

    Cyber security fear appeals:unexpectedly complicated

    Get PDF
    Cyber security researchers are starting to experiment with fear appeals, with a wide variety of designs and reported efficaciousness. This makes it hard to derive recommendations for designing and deploying these interventions. We thus reviewed the wider fear appeal literature to arrive at a set of guidelines to assist cyber security researchers. Our review revealed a degree of dissent about whether or not fear appeals are indeed helpful and advisable. Our review also revealed a wide range of fear appeal experimental designs, in both cyber and other domains, which confirms the need for some standardized guidelines to inform practice in this respect. We propose a protocol for carrying out fear appeal experiments, and we review a sample of cyber security fear appeal studies, via this lens, to provide a snapshot of the current state of play. We hope the proposed experimental protocol will prove helpful to those who wish to engage in future cyber security fear appeal research

    Gluon mass generation in the PT-BFM scheme

    Get PDF
    In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search of infrared finite solutions, paying particular attention to the role of the seagull graph in enforcing transversality, the necessity of introducing massless poles in the three-gluon vertex, and the incorporation of the correct renormalization group properties. In addition, we present a method for regulating the seagull-type contributions based on dimensional regularization; its applicability depends crucially on the asymptotic behavior of the solutions in the deep ultraviolet, and in particular on the anomalous dimension of the dynamically generated gluon mass. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles belonging to different Lorentz structures. The resulting integral equation is then solved numerically, the infrared and ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the effective gluon mass is determined. Various open questions and possible connections with different approaches in the literature are discussed.Comment: 54 pages, 24 figure

    Equilibrium configurations of two charged masses in General Relativity

    Get PDF
    An asymptotically flat static solution of Einstein-Maxwell equations which describes the field of two non-extreme Reissner - Nordstr\"om sources in equilibrium is presented. It is expressed in terms of physical parameters of the sources (their masses, charges and separating distance). Very simple analytical forms were found for the solution as well as for the equilibrium condition which guarantees the absence of any struts on the symmetry axis. This condition shows that the equilibrium is not possible for two black holes or for two naked singularities. However, in the case when one of the sources is a black hole and another one is a naked singularity, the equilibrium is possible at some distance separating the sources. It is interesting that for appropriately chosen parameters even a Schwarzschild black hole together with a naked singularity can be "suspended" freely in the superposition of their fields.Comment: 4 pages; accepted for publication in Phys. Rev.

    Field-cycling NMR realaxation spectroscopy of poly(di-n-alkylsiloxanes in solid, mesomorphic, and isotropic liquid phases

    Get PDF
    The frequency dependence of the proton spin-lattice relaxation times T1 and T1., in the laboratory and rotating frames, respectively, is reported for solid and liquid phases of poly(diethylsiloxane) (PDES) and in melts of poly(dimethylsiloxane) (PDMS). The total frequency range is 5 X 102 -3 X 108 Hz and is mainly covered by field-cycling NMR relaxation spectroscopy. The relaxation behavior of PDES in the liquid but ordered mesophase is compared to that of isotropic melts of PDES and PDMS and also to that of nematic main-chain liquid-crystal polymers. The frequency dependences of PDES and PDMS liquids can be represented at low and high frequencies by power laws, section by section. The relaxation behavior in the isotropic melts is entirely equivalent to that previously reported for other polymer species. In the PDES mesophase, the exponents of the power laws are significantly larger and the crossover frequency between the two regimes is reduced. The dynamics in this phase are discussed with respect to the influence of chain modes and order director fluctuations. The main conclusion is, on the whole, that data of the liquid phases are determined by chain modes rather than by local segment fluctuations. The chain dynamics in the PDES mesophase resemble the chain modes in isotropic melts modified for a microstructure with reduced randomness, whereas the influence of order director fluctuations can neither be confirmed nor ruled out

    Challenges in Using Cultured Primary Rodent Hepatocytes or Cell Lines to Study Hepatic HDL Receptor SR-BI Regulation by Its Cytoplasmic Adaptor PDZK1

    Get PDF
    Background: PDZK1 is a four PDZ-domain containing cytoplasmic protein that binds to a variety of membrane proteins via their C-termini and can influence the abundance, localization and/or function of its target proteins. One of these targets in hepatocytes in vivo is the HDL receptor SR-BI. Normal hepatic expression of SR-BI protein requires PDZK1 - <5% of normal hepatic SR-BI is seen in the livers of PDZK1 knockout mice. Progress has been made in identifying features of PDZK1 required to control hepatic SR-BI in vivo using hepatic expression of wild-type and mutant forms of PDZK1 in wild-type and PDZK1 KO transgenic mice. Such in vivo studies are time consuming and expensive, and cannot readily be used to explore many features of the underlying molecular and cellular mechanisms. Methodology/Principal Findings: Here we have explored the potential to use either primary rodent hepatocytes in culture using 2D collagen gels with newly developed optimized conditions or PDZK1/SR-BI co-transfected cultured cell lines (COS, HEK293) for such studies. SR-BI and PDZK1 protein and mRNA expression levels fell rapidly in primary hepatocyte cultures, indicating this system does not adequately mimic hepatocytes in vivo for analysis of the PDZK1 dependence of SR-BI. Although PDZK1 did alter SR-BI protein expression in the cell lines, its influence was independent of SR-BI’s C-terminus, and thus is not likely to occur via the same mechanism as that which occurs in hepatocytes in vivo. Conclusions/Significance: Caution must be exercised in using primary hepatocytes or cultured cell lines when studying the mechanism underlying the regulation of hepatic SR-BI by PDZK1. It may be possible to use SR-BI and PDZK1 expression as sensitive markers for the in vivo-like state of hepatocytes to further improve primary hepatocyte cell culture conditions.National Institutes of Health (U.S.) (Grant HL052212)National Institutes of Health (U.S.) (Grant HL066105)National Institutes of Health (U.S.) (Grant ES015241)National Institutes of Health (U.S.) (Grant GM068762

    Znf202 Affects High Density Lipoprotein Cholesterol Levels and Promotes Hepatosteatosis in Hyperlipidemic Mice

    Get PDF
    Background: The zinc finger protein Znf202 is a transcriptional suppressor of lipid related genes and has been linked to hypoalphalipoproteinemia. A functional role of Znf202 in lipid metabolism in vivo still remains to be established. Methodology and Principal Findings: We generated mouse Znf202 expression vectors, the functionality of which was established in several in vitro systems. Next, effects of adenoviral znf202 overexpression in vivo were determined in normo- as well as hyperlipidemic mouse models. Znf202 overexpression in mouse hepatoma cells mhAT3F2 resulted in downregulation of members of the Apoe/c1/c2 and Apoa1/c3/a4 gene cluster. The repressive activity of Znf202 was firmly confirmed in an apoE reporter assay and Znf202 responsive elements within the ApoE promoter were identified. Adenoviral Znf202 transfer to Ldlr-/- mice resulted in downregulation of apoe, apoc1, apoa1, and apoc3 within 24 h after gene transfer. Interestingly, key genes in bile flux (abcg5/8 and bsep) and in bile acid synthesis (cyp7a1) were also downregulated. At 5 days post-infection, the expression of the aforementioned genes was normalized, but mice had developed severe hepatosteatosis accompanied by hypercholesterolemia and hypoalphalipoproteinemia. A much milder phenotype was observed in wildtype mice after 5 days of hepatic Znf202 overexpression. Interestingly and similar to Ldl-/- mice, HDL-cholesterol levels in wildtype mice were lowered after hepatic Znf202 overexpression. Conclusion/Significance: Znf202 overexpression in vivo reveals an important role of this transcriptional regulator in liver lipid homeostasis, while firmly establishing the proposed key role in the control of HDL levels

    Elevated Salivary Alpha Amylase in Adolescent Sexual Abuse Survivors with Posttraumatic Stress Disorder Symptoms

    Get PDF
    Objective: Little is known regarding neuroendocrine responses in adolescent girls with posttraumatic stress disorder (PTSD) who have experienced sexual abuse. Therefore, we collected saliva samples three times daily for 3 days to assess concentrations of salivary alpha amylase (sAA) – a surrogate marker for autonomic nervous system (ANS) activity and, in particular, sympathetic activity – in sexually abused adolescent girls

    The Effects of Intranasal Oxytocin Administration on Sensitive Caregiving in Mothers with Postnatal Depression

    Get PDF
    Development Psychopathology in context: famil

    An integrated perspective linking physiological and psychological consequences of mild traumatic brain injury

    Get PDF
    Despite the often seemingly innocuous nature of a mild traumatic brain injury (mTBI), its consequences can be devastating, comprising debilitating symptoms that interfere with daily functioning. Currently, it is still difficult to pinpoint the exact cause of adverse outcome after mTBI. In fact, extensive research suggests that the underlying etiology is multifactorial. In the acute and early sub-acute stages, the pathophysiology of mTBI is likely to be dominated by complex physiological alterations including cellular injury, inflammation, and the acute stress response, which could lead to neural network dysfunction. In this stage, patients often report symptoms such as fatigue, headache, unstable mood and poor concentration. When time passes, psychological processes, such as coping styles, personality and emotion regulation, become increasingly influential. Disadvantageous, maladaptive, psychological mechanisms likely result in chronic stress which facilitates the development of long-lasting symptoms, possibly via persistent neural network dysfunction. So far, a systemic understanding of the coupling between these physiological and psychological factors that in concert define outcome after mTBI is lacking. The purpose of this narrative review article is to address how psychophysiological interactions may lead to poor outcome after mTBI. In addition, a framework is presented that may serve as a template for future studies on this subject
    corecore