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Abstract
Despite the often seemingly innocuous nature of a mild traumatic brain injury (mTBI), its consequences can be devastating, 
comprising debilitating symptoms that interfere with daily functioning. Currently, it is still difficult to pinpoint the exact 
cause of adverse outcome after mTBI. In fact, extensive research suggests that the underlying etiology is multifactorial. In 
the acute and early sub-acute stages, the pathophysiology of mTBI is likely to be dominated by complex physiological altera-
tions including cellular injury, inflammation, and the acute stress response, which could lead to neural network dysfunction. 
In this stage, patients often report symptoms such as fatigue, headache, unstable mood and poor concentration. When time 
passes, psychological processes, such as coping styles, personality and emotion regulation, become increasingly influential. 
Disadvantageous, maladaptive, psychological mechanisms likely result in chronic stress which facilitates the development of 
long-lasting symptoms, possibly via persistent neural network dysfunction. So far, a systemic understanding of the coupling 
between these physiological and psychological factors that in concert define outcome after mTBI is lacking. The purpose 
of this narrative review article is to address how psychophysiological interactions may lead to poor outcome after mTBI. In 
addition, a framework is presented that may serve as a template for future studies on this subject.
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Introduction

The vast majority (85–90%) of patients with traumatic 
brain injury (TBI) sustain a mild traumatic brain injury 
(mTBI). With an estimated annual worldwide incidence 

of approximately 600/100,000 persons (42,000,000 per-
sons worldwide), mTBI is the most common neurologic 
disorder [1, 2]. For a considerable percentage of patients 
(≈ 25%) it takes months or even years to recover due to 
persistent cognitive and emotional symptoms that interfere 
with resumption of work, social activities and studies [3–5]. 
Hence, this patient group imposes a tremendous burden on 
health services and economy. Although acute symptoms are 
thought to result from the brain injury itself, a comprehen-
sive physiological substrate for the persistence of symptoms 
has not been empirically established. In fact, for the major-
ity of patients conventional computed tomography (CT) or 
magnetic resonance imaging (MRI) do not show traumatic 
abnormalities, and if abnormalities are identified, they tend 
to correlate poorly with persisting symptom severity [6–8].

The application of advanced imaging modalities, such 
as functional MRI (fMRI) and diffusion-weighted imaging 
(DWI), has provided evidence of altered brain network con-
nectivity after mTBI, although a clear-cut mechanism under-
lying continued symptoms has not been found [9, 10]. There 
is also increasing evidence that certain protein biomarkers of 
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cellular injury in the acute phase post-injury are informative 
of injury severity and clinical outcome after mTBI [11, 12]. 
However, it is unclear if these markers have a role in the 
pathophysiology of persistent symptoms, and how this pro-
cess may be influenced by other acute physiological seque-
lae such as inflammation or the acute stress response. Fur-
thermore, there still exists a lively debate as to whether the 
influence of psychological factors may outweigh that of the 
physiological consequences of the injury itself in the causa-
tion of persistent symptoms and poor outcome after mTBI. 
Psychological factors, such as the presence of anxiety and 
depression, and the employment of certain coping styles, are 
known to exert a strong influence on recovery after mTBI [5, 
13–15]. Not surprisingly, stressful events such as sustaining 
a traumatic brain injury, can result in an increased demand 
on coping skills, especially in the current busy and often 
stressful modern environment. One of the most important 
elements of coping is the ability to regulate negative emo-
tions and stress, which is closely related to our personality 
[16, 17]. Inadequate emotion regulation could lead to emo-
tional distress, such as anxiety and depression, which may 
enhance the persistence of post-traumatic symptoms.

The pathophysiology of mTBI encompasses various 
(mostly acute) physiological and (mostly sub-acute/chronic) 
psychological processes, which are intricately linked. Dis-
entangling these relationships forms one of the major chal-
lenges in mTBI research. For example, it is still poorly 
understood whether or not physiological disturbances in the 
acute phase post-injury, such as cellular injury, inflammation 
and the acute stress response, are related to psychological 
problems at a later stage after mTBI, and whether there is 
an association with perturbations in neural networks that are 
necessary for emotion regulation and adequate coping skills. 
In the current narrative review, we aim to provide an over-
view of these physiological and psychological factors, and 
theoretically explore the interaction between these factors 
in the etiology of persistent symptoms and poor outcome 
after mTBI.

Cellular injury

Traumatic injury to neuronal, axonal, glial, and vascular 
structures causes the release of brain-specific proteins [11]. 
Promising results have been published suggesting that serum 
levels of brain-specific proteins, such as S100 calcium-bind-
ing protein B (S100B; primarily found in astroglial cells, but 
also in melanocytes), glial fibrillary acidic protein (GFAP; 
present in the cytoskeleton of several cells in the central 
nervous system, for example astrocytes), tau (protein that 
stabilizes microtubuli that make up the cytoskeleton of 
axons), neurofilament light (NF-L; protein that is also part 
of the cytoskeleton of neurons), and ubiquitin C-terminal 

hydrolase-L1 (UCH-L1; an enzyme which plays a role in 
the repair of neurons and axons via regulation of protein 
degradation), are predictive of the presence of lesions after 
mTBI, and poor outcome after mTBI [11, 18–23]. In Scan-
dinavia, S100B measurement in the acute phase post-injury 
has already been added to the Neurotrauma guidelines as a 
biomarker to reduce unnecessary CT-scans and associated 
costs [24]. In the United States, UCH-L1 and GFAP have 
been approved for the same purpose [23]. In sports-related 
mTBI, elevated tau-protein is related to recovery time and 
return to play [18]. It is thought that tau measurements might 
be used as a tool to detect residual neural damage, even in 
the absence of acute symptoms, which may protect a player 
from premature return to play, thereby reducing the risk of 
sustaining additional injury. Furthermore, hyperphospho-
rylated tau protein is a hallmark of the pathophysiology of 
chronic traumatic encephalopathy (CTE), which is a neuro-
degenerative disorder that can occur even in patients with 
(repetitive) mild TBI [25].

Despite these findings, we still know little about the exact 
role of these proteins in the development of persistent symp-
toms. The kinetics of these biomarkers vary, with S100B and 
GFAP reaching a peak serum concentration in the first 24 h 
after injury (‘acute biomarkers’), tau staying elevated for 
days to weeks (‘subacute biomarkers’), and NF-L continue 
rising for weeks to months after injury (‘chronic biomark-
ers’) [26]. Therefore, it would be interesting to investigate 
whether ‘acute’ biomarkers predict, and if ‘chronic’ bio-
markers accompany long-lasting symptoms.

Inflammation

Under normal circumstances, inflammation is closely regu-
lated, and helps to repair damaged tissue and to fight infec-
tions [27, 28]. However, excessive and prolonged inflamma-
tion, for example after TBI, has the opposite effect [28]. It 
has been shown that neuroinflammation occurs within sec-
onds to minutes after a TBI, and involves a complex cascade 
of microglia activation, pro- and anti-inflammatory cytokine 
release, and up- and downregulation of neurotrophic fac-
tors [28, 29]. Neuropathological research has demonstrated 
signs of neuroinflammation up to 18 years post-injury in 
patients with moderate/severe TBI, and these findings were 
related to white-matter degeneration [30]. Furthermore, a 
positron emission tomography (PET) study on American 
football players has shown microglia activation many years 
after the last mTBI [31], and chronic microglia activation 
is associated with the development of CTE [32]. Studies 
using rodent models have yielded data on the relationship 
between inflammation and behavioural deficits after mild 
TBI [29, 33–37]. However, relatively little is known about 
the role of inflammation in the pathophysiology of sequelae 
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following mild TBI in humans, as compared to moderate-
severe TBI [29]. A retrospective study on a human mTBI 
sample has shown an association between persistent post-
traumatic symptoms and elevated C-reactive protein within 
the first 72 h after injury [38]. Another recent retrospective 
study demonstrated a relation between interleukin (IL)-1β 
and IL-6 gene polymorphisms and the number and duration 
of post-traumatic symptoms after sports-related concussion 
[39]. In addition, reviews have been published that posit the 
possible influence of earlier (pre-injury) pro-inflammatory 
states, extracranial injury, infections and immunosenescence 
(i.e., deterioration of the immune system due to aging) on the 
occurrence of (neuro)inflammation in the pathophysiology 
of mTBI [40, 41]. For example, similarities exist between 
post-traumatic symptomatology and cognitive or behavio-
ral changes that arise from other inflammatory conditions, 
such as sepsis [40]. Interestingly, a recent study has shown 
that using an unsupervised multivariate approach applied to 
a multi-analyte proteomic panel, including several inflam-
matory markers, it was possible to fairly accurately predict 
positive CT-findings and outcome in a study sample that 
consisted predominantly of mild TBI patients, although 42% 
of these patients had lesions on CT [42].

It is important for future studies on the role of acute and 
chronic inflammation in the development of persistent symp-
toms and poor outcome, to compare patients with mild TBI 
to patients with peripheral inflammatory conditions, such as 
orthopedic injury.

Stress

During an acute stress response, for example elicited by a 
traumatic brain injury, brain structures such as the hypo-
thalamus, amygdala, and insula become activated, which 
engage the sympathetic autonomic nervous system and 
the hypothalamic–pituitary–adrenal (HPA) axis, leading to 
increased heart action and the release of catecholamines and 
cortisol. The release of cortisol is needed to initiate adap-
tive metabolic and mental processes to deal with the acute 
stressor [43]. However, an exaggerated and protracted stress 
response, which may be due to poor emotion regulation 
skills in case of stressful situations, is harmful to an individ-
ual. Chronically changed cortisol levels are associated with 
various physical and mental diseases [44]. Furthermore, 
excessive or prolonged stress can induce inflammation, via 
microglia activation, and the release of pro-inflammatory 
cytokines such as interleukin (IL)-1β and 6, and tumor 
necrosis factor (TNF)-α [27, 45]. These cytokines have also 
been found to be related to emotion regulation deficits in 
healthy young adults [46]. An important causative factor in 
the pro-inflammatory effect of (especially chronic) stress is 

glucocorticoid resistance, which is the decrease in sensitivity 
of immune cells to the effects of glucocorticoids [47].

There have been some data published on cortisol in 
patients with mTBI, and patients with mild to severe TBI 
[48–52]. These studies, although limited by sample size 
and lack of control groups, demonstrated that associations 
are present between cortisol levels, injury severity, and 
cognitive deficits at various stages post-injury. On the one 
hand, alterations in cortisol levels after TBI can be caused 
by HPA-axis dysfunction due to the injury itself, which is 
common in patients with TBI, even following mild TBI [53, 
54]. On the other hand, alterations in cortisol levels (i.e., 
increased levels) after mTBI can be viewed as a physiologi-
cal response to the psychological effects of sustaining a TBI, 
which is a stressful event. It is still unknown if acute changes 
in cortisol levels are involved in the causation and/or persis-
tence of symptoms, and if the effects of stress are mediated 
via inflammation. In contrast to acute stress, it is thought 
that psychological mechanisms are responsible for chronic 
stress and persistent symptoms after mTBI, although to our 
knowledge this has not yet been corroborated by results from 
longitudinal cortisol measurements. Similar to cytokine 
analyses, acute changes in cortisol can be reliably measured 
in both serum and saliva. Interestingly, chronic stress can 
(also) be measured in hair samples. In fact, differences in 
long-term hair cortisol levels have been found between vari-
ous mental illness such as major depressive disorder, anxiety 
disorders and post-traumatic stress disorder, illnesses which 
are also quite common after mild TBI [44, 55]. Since hair 
grows approximately 1 cm per month, hair analysis is also 
informative of the cortisol levels before and after a stressful 
event, which makes it possible to investigate stress before 
and after mTBI, and more specifically, to investigate whether 
pre-injury stress levels are associated with chronic stress 
after injury.

Neural networks and emotion regulation

Adequate emotion regulation skills are a prerequisite to deal 
with stressful conditions, such as a mTBI. Although many 
fMRI-studies have been conducted in non-TBI study samples 
to investigate neural networks during tasks that challenge 
certain emotion regulation skills, or during tasks that contain 
stressful conditions, not much is known about functioning of 
neural networks during emotion regulation after mTBI [10, 
17, 56]. There are two major types of emotion regulation: 
top–down (explicit) and bottom–up (implicit) emotion regu-
lation [57]. One of the most important top–down emotion 
regulation strategies is cognitive reappraisal, which refers 
to the process of rethinking negative thoughts and changing 
them into more neutral or perhaps even positive thoughts 
[58]. Top–down emotion regulation is mainly conducted 
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using the executive network, a network that is also impor-
tant for cognitive performance [17, 57, 59]. Neural networks 
that play a pivotal role in emotion regulation are depicted in 
Fig. 1; notably, the prefrontal cortex occupies a central posi-
tion in these networks. The default mode network is gener-
ally considered a task-negative network, as areas of this net-
work (e.g., PCC, precuneus and medial prefrontal cortex) are 
consistently deactivated during externally directed mental 
tasks [60]. Accumulating evidence suggests that these areas 
are also important for top–down emotion regulation, espe-
cially when emotion regulation is stimulated via social sup-
port from family-members, friends, or psychotherapists [17, 
61]. However, over-activity in this network is often associ-
ated with psychopathology such as major depressive disor-
der [62]. Recently, a study on healthy adults suggested that 
there is an association between pro-inflammatory cytokines 
and functional connectivity of the default mode network, 
which highlights the interaction between stress, inflamma-
tion and network dysfunction in psychopathology [63].

In contrast to top–down emotion regulation, bottom–up 
regulation refers to the implicit processing of salient infor-
mation that generates emotions, for example a stressful event 
or stimulus, without engagement of higher order cognitive 
mechanisms [57, 64]. An example of a bottom–up mental 
process is when attention is focused to the present inter-
nal sensations (e.g., pain, emotions) without cognitively 
analyzing these sensations. An important network for bot-
tom–up emotion regulation is the salience network, which 
consists of the insulae and anterior cingulate cortex. The 
mechanism by which the salience network contributes to 

effective emotion regulation during stressful conditions, is 
through generation of emotional awareness and subsequent 
modulation of executive and default mode network activity 
[57, 65–67]. The salience network forms an intricate and 
dynamic link between autonomic bodily arousal responses 
that accompany emotional and stressful states, and cognitive 
emotion regulation [68]. Furthermore, HPA-axis reactivity 
is positively linked to connectivity of the salience network, 
which highlights the role of this network in modulation of 
stress responses [67].

Mindfulness, which has also shown to be beneficial in 
mTBI, engages bottom–up as well as top–down emotion 
regulation mechanisms, depending on the duration of prac-
tice [64, 69]. Mindfulness is a form of meditation, which is 
derived from Buddhism and involves focusing one’s atten-
tion to the present moment, maintaining awareness and 
control of present thoughts, feelings and sensations, and 
observing them without judgment [70]. Interestingly, fMRI 
studies have shown that mindfulness increases activity of 
areas within the salience network [71], reduces default mode 
network activity [72], and alters the functional collaboration 
between the salience, executive, and default mode networks 
[65].

Resting state functional MRI (fMRI) research from sev-
eral research groups, including our own, has shown the 
involvement of the aforementioned neural networks in the 
presence and persistence of post-traumatic symptoms, anxi-
ety and depression after mTBI [73–77]. Global increases 
in resting-state functional connectivity in symptomatic 
patients with sports-related mild TBI seem to have a delayed 

Fig. 1   Spatial maps representing neural networks that are important 
for emotion regulation. The executive network is depicted in yellow 
(key areas: ventro- and dorsolateral prefrontal cortex, supplementary 
motor area, and posterior parietal cortex), the salience network in red 

(key areas: insula and anterior cingulate cortex) and the default mode 
network in blue (key areas: medial prefrontal cortex, posterior cingu-
late cortex, and precuneus). Maps are derived from fMRI-data of our 
own department
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onset, peaking at approximately 1 week post-injury [78]. 
Our research group has found that higher resting-state con-
nectivity within the default mode network in het sub-acute 
phase post-injury, is a possible biomarker for the develop-
ment of persistent symptoms [74]. However, little is known 
about neural networks during the actual process of emotion 
regulation, which may be difficult to perform in daily life for 
a subgroup of patients with mTBI. This can be tested using 
emotion regulation fMRI tasks, which are comprised of con-
ditions that evoke either positive or negative emotions. Par-
ticipants are instructed to apply certain emotion-regulation 
techniques such as enhancing or suppressing these emotions 
during these conditions. To our best knowledge, only two 
studies have been published that used emotion regulation 
fMRI paradigms in mTBI. One study demonstrated lower 
activity in the orbitofrontal cortex and superior parietal 
lobe during bottom–up emotion induction (i.e., condition 
in which subjects had to judge whether an angry, fearful or 
neutral face belonged to a male or female), possibly indicat-
ing impaired emotion regulation [59]. These findings were 
related to higher post-traumatic stress scores. The other 
study showed higher activity of the insula, peri-central gyri, 
parietal and temporal cortex in emotion enhancement (i.e., 
condition in which subjects had to try to amplify their nega-
tive feelings towards a negatively valenced picture), which 
may indicate increased vigilance or bottom–up emotional 
processing, or poor recruitment of areas for emotion regula-
tion [79]. It is still unclear how the executive, default mode, 
and salience networks function during emotion regulation 
after mTBI.

The heart as a biomarker of emotion 
regulation and stress

So far, it can be concluded that the complex interplay 
between neural networks that are important for emotion 
regulation (i.e., executive, default mode, and salience net-
work), the autonomic nervous system, and the HPA-axis, 
determines an individual’s capacity to deal with stressful 
situations [56, 80, 81]. The neurovisceral integration model 
(NIM) states that resting-state heart rate variability (HRV), 
defined as the variability of time between heartbeats, is an 
indirect marker of the function of these neural networks 
[80, 82, 83]. The heart is under constant inhibitory control 
of the parasympathetic nervous system (vagal nerve tone), 
which dominates the sympathetic nervous system, keeping 
the heart rhythm in balance [81]. Simplistically stated, high 
resting-state HRV primarily reflects higher parasympathetic 
activity, whereas low HRV reflects activity of the sympa-
thetic nervous system. With respect to the NIM, high resting 
state HRV is considered a marker of high vagal tone and 
thus of adequate function of the neural networks. Emotion 

regulation difficulties and psychopathological states, such as 
anxiety, depression and post-traumatic stress disorder, are 
related to lower HRV [80, 81, 83–86]. In addition, higher 
resting state HRV is associated with better working memory 
performance in healthy people [87].

The last few years, several studies have been published 
that report changes in HRV after traumatic brain injury, both 
at the severe as well as at the mild end of the TBI spectrum 
[51, 88–93]. Among other things, it has been shown that 
lower HRV is related to anxiety and depression after TBI 
[92]. However, most of these studies were sub-optimally 
designed, and to our knowledge, no study so far focused on 
HRV in the acute phase after injury, or on the relationship 
between HRV and function of neural networks (as measured 
with fMRI).

The psychophysiological linkage in mTBI

It is still unknown to what extent the various acute biochemi-
cal effects are responsible for persistent symptoms and poor 
outcome after mTBI, and if there is a correlation with psy-
chological factors. More research is required to understand 
this complex pathophysiological process.

Previous research has shown that traumatic injury to 
neural, glial or vascular tissue causes the release of brain-
specific proteins, and that measurement of levels of these 
proteins in the acute phase after injury offers some diagnos-
tic value [18–20, 24]. However, not much is known about 
the role of these proteins in the development of persistent 
symptoms after mTBI. Another consequence of cellular 
injury is neuroinflammation, which has barely been inves-
tigated in clinical mTBI samples. Neuroinflammation may 
also develop secondary to high cortisol levels associated 
with stress. Inter-individual differences in cortisol release 
acutely after injury can be either linked to the degree of 
injury to neural structures that regulate the HPA-axis, or 
to pre-existent hyper- or hypo-reactivity of the HPA-axis 
[53, 54]. The latter could be associated with pre-existent 
psychological factors such as the ability to cope with stress 
or the experience of stressful situations or psychotrauma in 
childhood. Thus, the extent of the acute stress response prob-
ably depends on both physiological as well as psychological 
factors, although this has never been thoroughly investigated 
in patients with mTBI.

The interaction between cellular injury, inflammation and 
stress, mediated by pre-existent coping style or personal-
ity, might well be a key mechanism in the persistence of 
post-traumatic symptoms. Although psychological mecha-
nisms most likely play a dominant role in the development 
of persistent symptoms, it could be hypothesized that acute 
physiological effects related to the injury lead to dysfunc-
tion of neural networks that are important for emotion 
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regulation. Patients with network dysfunction after mTBI 
may be prone to developing chronic stress, which facili-
tates the persistence of symptoms. It is also possible that 
patients with specific psychological characteristics (for 
example high neuroticism) have a stronger stress and pro-
inflammatory response in the acute phase post-injury. These 
complex topics can be approached using a combination of 
personality and coping questionnaires, serum and salivary 
protein, cortisol and cytokine analyses, and emotion regu-
lation fMRI-paradigms (e.g., cognitive reappraisal and 

mindfulness tasks). In addition to administering question-
naires, pre-injury stress levels can be assessed using hair 
cortisol analyses. A prolonged pro-inflammatory state, per-
haps due to chronic elevations in cortisol, could contribute to 
persistent network dysfunction. This can be measured using 
longitudinal serum or salivary cytokine samples. It has to be 
realized that causality is a difficult issue (which is inherent 
in mTBI research), as neural network dysfunction itself may 
also lead to inflammation. Nonetheless, an intriguing ques-
tion is to what extent the variance associated with network 

Fig. 2   Acute symptoms are 
probably the result of trauma-
induced physiological changes, 
such as cell injury, inflammation 
and acute stress. It is thought 
that maladaptive pre-existent 
psychological factors (e.g., 
neuroticism, passive coping, 
and pre-injury mental distress) 
impede the ability to cope with 
acute symptoms leading to the 
persistence of symptoms. In this 
infographic we propose a scien-
tific framework that can be used 
to further study this subject. 
Infographic was made by Rik-
kert Veltman Media Producties
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dysfunction and prolonged inflammation is explained by the 
injury itself, or by (pre-existent) psychological factors. This 
directly links to another fascinating question: can mTBI and 
subsequent stress and inflammatory responses alter coping 
skills, vulnerability to stress and personality?

Heart rate variability is reflective of autonomic nervous 
system reactivity related to acute stress, and is also a deriva-
tive of the function of neural networks that are responsible 
for emotion regulation and the ability to deal with stress 
[83]. Therefore, HRV can be used alongside fMRI-experi-
ments to measure emotion and stress regulation in the acute 
or later stages after mTBI. For example, a key question is 
whether acute changes in HRV, measured during presenta-
tion at the emergency department, are related to dysfunction 
of neural networks at a later stage after mTBI.

In Fig. 2 we present a possible framework that can be 
used to investigate the interaction between aforementioned 
physiological and psychological factors. For the sake of 
clarity, a subdivision was made between the acute ‘physi-
ological phase’ and the more sub-acute/chronic ‘psychologi-
cal phase’, although we realize that there is much overlap 
between factors that fall under these phases. The key feature 
of this infographic is (subjective) post-traumatic symptoms, 
which develop in the acute phase, and the ultimate goal is 
to unravel the mechanisms that lead to persistent symptoms 
and poor outcome.

Conclusion

In summary, studies so far have suggested that sequelae 
after mTBI have a complex multifactorial etiology. A bet-
ter understanding of the interaction between factors is war-
ranted, especially regarding the interaction between acute 
(neuro)physiological and psychological factors. This under-
standing is needed to develop tailored psychological or phar-
macological interventions in patients with mTBI, which are 
important future research goals. In our opinion, it is worth-
while to study the influence of acute physiological effects 
(i.e., cellular damage, inflammation, acute stress) after 
mTBI on neural networks that are important for emotion 
regulation, and to examine the possible interactions between 
these physiological effects and psychological factors such 
as personality characteristics, coping style, childhood psy-
chotrauma or pre-injury mental distress.
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