216 research outputs found

    A 3D numerical approach to assess the temporal evolution of settlement damage to buildings on cavities subject to weathering

    Get PDF
    The goal of this paper is to show how a recently developed advanced hydro-chemo-mechanical (HCM) coupled constitutive and numerical model for soft rocks can be applied to predict the temporal evolution of settlement damage to buildings on cavities subject to weathering. In particular, a building damage index (BDI) and its evolution with time is proposed. The definition of the BDI is inspired by the work of Boscardin and Cording (1989) and uses the surface differential settlements obtained by finite element (FE) analyses to assess how far a building is from a non-acceptable service condition. By modelling the reactive transport of chemical species in 3D and using a coupled Chemo-Hydro-Mechanical (CHM) constitutive and numerical model, it is possible to simulate weathering scenarios and monitor the temporal evolution of surface settlements making the BDI time dependent. This approach is applied to evaluate the damage evolution of two buildings lying on two anthropic caves in a calcarenite deposit belonging to the Calcarenite di Gravina Formation. Standard and advanced experimental tests are performed on the in-situ material and the results are used to calibrate the constitutive model. The soundness of both constitutive relationship and reactive transport solver is subsequently tested by simulating two laboratory scale boundary value experiments. The first is a model footing test on dry and wet calcarenite while the second is a small scale pillar that, after the saturation induced short-term water weakening, fails due to a long term dissolution weathering process. Finally, both 2 and 3D coupled finite element (FE) analyses simulating different weathering scenarios and corresponding settlements affecting the buildings above the considered cavities are presented. Particular attention is placed on assessing the BDI and its temporal evolution

    Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells

    Get PDF
    It is well accepted that natural tissue regeneration is unlikely to occur if the cells are not supplied with an extracellular matrix (ECM) substitute. With this goal, several different methodologies have been used to produce a variety of 3D scaffolds as artificial ECM substitutes suitable for bone and cartilage tissue engineering. Furthermore, osteochondral tissue engineering presents new challenges since the combination of scaffolding and co-culture requirements from both bone and cartilage applications is required in order to achieve a successful osteochondral construct. In this paper, an innovative processing route based on a chitosan particles aggregation methodology for the production of cartilage and osteochondral tissue engineering scaffolds is reported. An extensive characterization is presented including a morphological evaluation using Micro-Computed Tomography (μCT) and 3D virtual models built with an image processing software. Mechanical and water uptake characterizations were also carried out, evidencing the potential of the developed scaffolds for the proposed applications. Cytotoxicity tests show that the developed chitosan particles agglomerated scaffolds do not exert toxic effects on cells. Furthermore, osteochondral bilayered scaffolds could also be developed. Preliminary seeding of mesenchymal stem cells isolated from human adipose tissue was performed aiming at developing solutions for chondrogenic and osteogenic differentiation for osteochondral tissue engineering applications.Fundação para a Ciência e a Tecnologia (FCT)European NoE EXPERTISSUES (NMP3-CT-2004-500283)European STREP Project HIPPOCRATES (NMP3-CT-2003-505758

    Materials in particulate form for tissue engineering. 2 Applications in bone

    Get PDF
    Materials in particulate form have been the subjects of intensive research in view of their use as drug delivery systems. While within this application there are still issues to be addressed, these systems are now being regarded as having a great potential for tissue engineering applications. Bone repair is a very demanding task, due to the specific characteristics of skeletal tissues, and the design of scaffolds for bone tissue engineering presents several difficulties. Materials in particulate form are now seen as a means of achieving higher control over parameters such as porosity, pore size, surface area and the mechanical properties of the scaffold. These materials also have the potential to incorporate biologically active molecules for release and to serve as carriers for cells. It is believed that the combination of these features would create a more efficient approach towards regeneration. This review focuses on the application ofmaterials in particulate formfor bone tissue engineering. A brief overview of bone biology and the healing process is also provided in order to place the application in its broader context. An original compilation of molecules with a documented role in bone tissue biology is listed, as they have the potential to be used in bone tissue engineering strategies. To sum up this review, examples of works addressing the above aspects are presented

    Development of Cost-effective Endurance Test Rig with Integrated Algorithm for Safety

    Get PDF
    This paper presents a novel algorithm for controlling a new endur-ance test rig for the validation of a safety switch of the Cortech HealthCare Ltd shower and commode chair. The paper outlines the design of the algorithm as well as the main concept and criteria together with the validation and testing methods. In order to validate the algorithm, a set of preliminary trials is also presented

    Updated fracture incidence rates for the US version of FRAX®

    Get PDF
    # The Author(s) 2009. This article is published with open access at Springerlink.com Summary On the basis of updated fracture and mortality data, we recommend that the base population values used in the US version of FRAX ® be revised. The impact of suggested changes is likely to be a lowering of 10-year fracture probabilities. Introduction Evaluation of results produced by the US version of FRAX ® indicates that this tool overestimates the likelihood of major osteoporotic fracture. In an attempt to correct this, we updated underlying fracture and mortality rates for the model. Methods We used US hospital discharge data from 2006 t

    Meridional density gradients do not control the Atlantic overturning circulation

    Get PDF
    A wide body of modeling and theoretical scaling studies support the concept that changes to the Atlantic meridional overturning circulation (AMOC), whether forced by winds or buoyancy fluxes, can be understood in terms of a simple causative relation between the AMOC and an appropriately defined meridional density gradient (MDG). The MDG is supposed to translate directly into a meridional pressure gradient. Here two sets of experiments are performed using a modular ocean model coupled to an energy–moisture balance model in which the positive AMOC–MDG relation breaks down. In the first suite of seven model integrations it is found that increasing winds in the Southern Ocean cause an increase in overturning while the surface density difference between the equator and North Atlantic drops. In the second suite of eight model integrations the equation of state is manipulated so that the density is calculated at the model temperature plus an artificial increment ΔT that ranges from −3° to 9°C. (An increase in ΔT results in increased sensitivity of density to temperature gradients.) The AMOC in these model integrations drops as the MDG increases regardless of whether the density difference is computed at the surface or averaged over the upper ocean. Traditional scaling analysis can only produce this weaker AMOC if the scale depth decreases enough to compensate for the stronger MDG. Five estimates of the depth scale are evaluated and it is found that the changes in the AMOC can be derived from scaling analysis when using the depth of the maximum overturning circulation or estimates thereof but not from the pycnocline depth. These two depth scales are commonly assumed to be the same in theoretical models of the AMOC. It is suggested that the correlation between the MDG and AMOC breaks down in these model integrations because the depth and strength of the AMOC is influenced strongly by remote forcing such as Southern Ocean winds and Antarctic Bottom Water formation

    Mississippi River and Sea Surface Height Effects on Oil Slick Migration

    Get PDF
    Millions of barrels of oil escaped into the Gulf of Mexico (GoM) after the 20 April, 2010 explosion of Deepwater Horizon (DH). Ocean circulation models were used to forecast oil slick migration in the GoM, however such models do not explicitly treat the effects of secondary eddy-slopes or Mississippi River (MR) hydrodynamics. Here we report oil front migration that appears to be driven by sea surface level (SSL) slopes, and identify a previously unreported effect of the MR plume: under conditions of relatively high river discharge and weak winds, a freshwater mound can form around the MR Delta. We performed temporal oil slick position and altimeter analysis, employing both interpolated altimetry data and along-track measurements for coastal applications. The observed freshwater mound appears to have pushed the DH oil slick seaward from the Delta coastline. We provide a physical mechanism for this novel effect of the MR, using a two-layer pressure-driven flow model. Results show how SSL variations can drive a cross-slope migration of surface oil slicks that may reach velocities of order km/day, and confirm a lag time of order 5–10 days between mound formation and slick migration, as observed form the satellite analysis. Incorporating these effects into more complex ocean models will improve forecasts of slick migration for future spills. More generally, large SSL variations at the MR mouth may also affect the dispersal of freshwater, nutrients and sediment associated with the MR plume

    Transcription profiling of HCN-channel isotypes throughout mouse cardiac development

    Get PDF
    Hyperpolarization-activated ion channels, encoded by four mammalian genes (HCN1-4), contribute in an important way to the cardiac pacemaker current If. Here, we describe the transcription profiles of the four HCN genes, the NRSF, KCNE2 and Kir2.1 genes from embryonic stage E9.5 dpc to postnatal day 120 in the mouse. Embryonic atrium and ventricle revealed abundant HCN4 transcription but other HCN transcripts were almost absent. Towards birth, HCN4 was downregulated in the atrium and almost vanished from the ventricle. After birth, however, HCN isotype transcription changed remarkably, showing increased levels of HCN1, HCN2 and HCN4 in the atrium and of HCN2 and HCN4 in the ventricle. HCN3 showed highest transcription at early embryonic stages and was hardly detectable thereafter. At postnatal day 10, HCN4 was highest in the sinoatrial node, being twofold higher than HCN1 and fivefold higher than HCN2. In the atrium, HCN4 was similar to HCN1 and sevenfold higher than HCN2. In the ventricle, in contrast, HCN2 was sixfold higher than HCN4, while HCN1 was absent. Subsequently all HCN isotype transcripts declined to lower adult levels, while ratios of HCN isotypes remained stable. In conclusion, substantial changes of HCN isotype transcription throughout cardiac development suggest that a regulated pattern of HCN isotypes is required to establish and ensure a stable heart rhythm. Furthermore, constantly low HCN transcription in adult myocardium may be required to prevent atrial and ventricular arrhythmogenesis
    corecore