593 research outputs found

    Self-organization in the olfactory system: one shot odor recognition in insects

    Get PDF
    We show in a model of spiking neurons that synaptic plasticity in the mushroom bodies in combination with the general fan-in, fan-out properties of the early processing layers of the olfactory system might be sufficient to account for its efficient recognition of odors. For a large variety of initial conditions the model system consistently finds a working solution without any fine-tuning, and is, therefore, inherently robust. We demonstrate that gain control through the known feedforward inhibition of lateral horn interneurons increases the capacity of the system but is not essential for its general function. We also predict an upper limit for the number of odor classes Drosophila can discriminate based on the number and connectivity of its olfactory neurons

    A Framework for Exploring Functional Variability in Olfactory Receptor Genes

    Get PDF
    BACKGROUND: Olfactory receptors (ORs) are the largest gene family in mammalian genomes. Since nearly all OR genes are orphan receptors, inference of functional similarity or differences between odorant receptors typically relies on sequence comparisons. Based on the alignment of entire coding region sequence, OR genes are classified into families and subfamilies, a classification that is believed to be a proxy for OR gene functional variability. However, the assumption that overall protein sequence diversity is a good proxy for functional properties is untested. METHODOLOGY: Here, we propose an alternative sequence-based approach to infer the similarities and differences in OR binding capacity. Our approach is based on similarities and differences in the predicted binding pockets of OR genes, rather than on the entire OR coding region. CONCLUSIONS: Interestingly, our approach yields markedly different results compared to the analysis based on the entire OR coding-regions. While neither approach can be tested at this time, the discrepancy between the two calls into question the assumption that the current classification reliably reflects OR gene functional variability

    Molecular evolutionary characterization of a V1R subfamily unique to strepsirrhine primates.

    Get PDF
    Vomeronasal receptor genes have frequently been invoked as integral to the establishment and maintenance of species boundaries among mammals due to the elaborate one-to-one correspondence between semiochemical signals and neuronal sensory inputs. Here, we report the most extensive sample of vomeronasal receptor class 1 (V1R) sequences ever generated for a diverse yet phylogenetically coherent group of mammals, the tooth-combed primates (suborder Strepsirrhini). Phylogenetic analysis confirms our intensive sampling from a single V1R subfamily, apparently unique to the strepsirrhine primates. We designate this subfamily as V1Rstrep. The subfamily retains extensive repertoires of gene copies that descend from an ancestral gene duplication that appears to have occurred prior to the diversification of all lemuriform primates excluding the basal genus Daubentonia (the aye-aye). We refer to the descendent clades as V1Rstrep-α and V1Rstrep-β. Comparison of the two clades reveals different amino acid compositions corresponding to the predicted ligand-binding site and thus potentially to altered functional profiles between the two. In agreement with previous studies of the mouse lemur (genus, Microcebus), the majority of V1Rstrep gene copies appear to be intact and under strong positive selection, particularly within transmembrane regions. Finally, despite the surprisingly high number of gene copies identified in this study, it is nonetheless probable that V1R diversity remains underestimated in these nonmodel primates and that complete characterization will be limited until high-coverage assembled genomes are available

    Lymphocytes and the Dap12 Adaptor Are Key Regulators of Osteoclast Activation Associated with Gonadal Failure

    Get PDF
    Bone resorption by osteoclasts is necessary to maintain bone homeostasis. Osteoclast differentiation from hematopoietic progenitors and their activation depend on M-CSF and RANKL, but also requires co-stimulatory signals acting through receptors associated with DAP12 and FcRγ adaptors. Dap12 mutant mice (KΔ75) are osteopetrotic due to inactive osteoclasts but, surprisingly, these mice are more sensitive than WT mice to bone loss following an ovariectomy. Because estrogen withdrawal is known to disturb bone mass, at least in part, through lymphocyte interaction, we looked at the role of mature lymphocytes on osteoclastogenesis and bone mass in the absence of functional DAP12. Lymphocytes were found to stimulate an early osteoclast differentiation response from Dap12-deficient progenitors in vitro. In vivo, Rag1-/- mice lacking mature lymphocytes did not exhibit any bone phenotype, but lost their bone mass after ovariectomy like KΔ75 mice. KΔ75;Rag1-/- double mutant female mice exhibited a more severe osteopetrosis than Dap12-deficient animals but lost their bone mass after ovariectomy, like single mutants. These results suggest that both DAP12 and mature lymphocytes act synergistically to maintain bone mass under physiological conditions, while playing similar but not synergistic co-stimulatory roles in protecting bone loss after gonadal failure. Thus, our data support a role for lymphocytes during osteoclast differentiation and suggest that they may function as accessory cells when regular osteoclast function is compromised

    A Gateway MultiSite Recombination Cloning Toolkit

    Get PDF
    The generation of DNA constructs is often a rate-limiting step in conducting biological experiments. Recombination cloning of single DNA fragments using the Gateway system provided an advance over traditional restriction enzyme cloning due to increases in efficiency and reliability. Here we introduce a series of entry clones and a destination vector for use in two, three, and four fragment Gateway MultiSite recombination cloning whose advantages include increased flexibility and versatility. In contrast to Gateway single-fragment cloning approaches where variations are typically incorporated into model system-specific destination vectors, our Gateway MultiSite cloning strategy incorporates variations in easily generated entry clones that are model system-independent. In particular, we present entry clones containing insertions of GAL4, QF, UAS, QUAS, eGFP, and mCherry, among others, and demonstrate their in vivo functionality in Drosophila by using them to generate expression clones including GAL4 and QF drivers for various trp ion channel family members, UAS and QUAS excitatory and inhibitory light-gated ion channels, and QUAS red and green fluorescent synaptic vesicle markers. We thus establish a starter toolkit of modular Gateway MultiSite entry clones potentially adaptable to any model system. An inventory of entry clones and destination vectors for Gateway MultiSite cloning has also been established (www.gatewaymultisite.org)

    Expression of B-RAF V600E in Type II Pneumocytes Causes Abnormalities in Alveolar Formation, Airspace Enlargement and Tumor Formation in Mice

    Get PDF
    Growth factor induced signaling cascades are key regulatory elements in tissue development, maintenance and regeneration. Perturbations of these cascades have severe consequences, leading to developmental disorders and neoplastic diseases. As a major function in signal transduction, activating mutations in RAF family kinases are the cause of human tumorigenesis, where B-RAF V600E has been identified as the prevalent mutant. In order to address the oncogenic function of B-RAF V600E, we have generated transgenic mice expressing the activated oncogene specifically in lung alveolar epithelial type II cells. Constitutive expression of B-RAF V600E caused abnormalities in alveolar epithelium formation that led to airspace enlargements. These lung lesions showed signs of tissue remodeling and were often associated with chronic inflammation and low incidence of lung tumors. The inflammatory cell infiltration did not precede the formation of the lung lesions but was rather accompanied with late tumor development. These data support a model where the continuous regenerative process initiated by oncogenic B-RAF-driven alveolar disruption provides a tumor-promoting environment associated with chronic inflammation

    Substrate Reduction Augments the Efficacy of Enzyme Therapy in a Mouse Model of Fabry Disease

    Get PDF
    Fabry disease is an X-linked glycosphingolipid storage disorder caused by a deficiency in the activity of the lysosomal hydrolase α-galactosidase A (α-gal). This deficiency results in accumulation of the glycosphingolipid globotriaosylceramide (GL-3) in lysosomes. Endothelial cell storage of GL-3 frequently leads to kidney dysfunction, cardiac and cerebrovascular disease. The current treatment for Fabry disease is through infusions of recombinant α-gal (enzyme-replacement therapy; ERT). Although ERT can markedly reduce the lysosomal burden of GL-3 in endothelial cells, variability is seen in the clearance from several other cell types. This suggests that alternative and adjuvant therapies may be desirable. Use of glucosylceramide synthase inhibitors to abate the biosynthesis of glycosphingolipids (substrate reduction therapy, SRT) has been shown to be effective at reducing substrate levels in the related glycosphingolipidosis, Gaucher disease. Here, we show that such an inhibitor (eliglustat tartrate, Genz-112638) was effective at lowering GL-3 accumulation in a mouse model of Fabry disease. Relative efficacy of SRT and ERT at reducing GL-3 levels in Fabry mouse tissues differed with SRT being more effective in the kidney, and ERT more efficacious in the heart and liver. Combination therapy with ERT and SRT provided the most complete clearance of GL-3 from all the tissues. Furthermore, treatment normalized urine volume and uromodulin levels and significantly delayed the loss of a nociceptive response. The differential efficacies of SRT and ERT in the different tissues indicate that the combination approach is both additive and complementary suggesting the possibility of an improved therapeutic paradigm in the management of Fabry disease

    A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ageing of the worldwide population means there is a growing need for research on the biology of ageing. DNA damage is likely a key contributor to the ageing process and elucidating the role of different DNA repair systems in ageing is of great interest. In this paper we propose a data mining approach, based on classification methods (decision trees and Naive Bayes), for analysing data about human DNA repair genes. The goal is to build classification models that allow us to discriminate between ageing-related and non-ageing-related DNA repair genes, in order to better understand their different properties.</p> <p>Results</p> <p>The main patterns discovered by the classification methods are as follows: (a) the number of protein-protein interactions was a predictor of DNA repair proteins being ageing-related; (b) the use of predictor attributes based on protein-protein interactions considerably increased predictive accuracy of attributes based on Gene Ontology (GO) annotations; (c) GO terms related to "response to stimulus" seem reasonably good predictors of ageing-relatedness for DNA repair genes; (d) interaction with the XRCC5 (Ku80) protein is a strong predictor of ageing-relatedness for DNA repair genes; and (e) DNA repair genes with a high expression in T lymphocytes are more likely to be ageing-related.</p> <p>Conclusions</p> <p>The above patterns are broadly integrated in an analysis discussing relations between Ku, the non-homologous end joining DNA repair pathway, ageing and lymphocyte development. These patterns and their analysis support non-homologous end joining double strand break repair as central to the ageing-relatedness of DNA repair genes. Our work also showcases the use of protein interaction partners to improve accuracy in data mining methods and our approach could be applied to other ageing-related pathways.</p

    Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells

    Get PDF
    Immunotherapy using checkpoint-blocking antibodies against targets such as CTLA-4 and PD-1 can cure melanoma and non-small cell lung cancer in a subset of patients. The presence of CD8 T cells in the tumor correlates with improved survival. We show that immuno-positron emission tomography (immuno-PET) can visualize tumors by detecting infiltrating lymphocytes and, through longitudinal observation of individual animals, distinguish responding tumors from those that do not respond to therapy. We used 89 Zr-labeled PEGylated single-domain antibody fragments (VHHs) specific for CD8 to track the presence of intratumoral CD8 + T cells in the immunotherapy-susceptible B16 melanoma model in response to checkpoint blockade. A 89 Zr-labeled PEGylated anti-CD8 VHH detected thymus and secondary lymphoid structures as well as intratumoral CD8 T cells. Animals that responded to CTLA-4 therapy showed a homogeneous distribution of the anti-CD8 PET signal throughout the tumor, whereas more heterogeneous infiltration of CD8 T cells correlated with faster tumor growth and worse responses. To support the validity of these observations, we used two different transplantable breast cancer models, yielding results that conformed with predictions based on the antimelanoma response. It may thus be possible to use immuno-PET and monitor antitumor immune responses as a prognostic tool to predict patient responses to checkpoint therapies.National Institutes of Health (U.S.) (Grant R01-AI087879-06)National Institutes of Health (U.S.) (Grant DP1-GM106409-03)National Institutes of Health (U.S.) (Grant R01-GM100518-04)National Institutes of Health (U.S.) (Grant P01 CA080111
    corecore