473 research outputs found

    the chromosomes of the cynomolgus macaque macaca fascicularis

    Get PDF
    The Cynomolgus or crab-eating macaque, Macaca fascicularis (M. irus) has 42 chromosomes. The X chromosome is submetacentric and about 5 % in length of the complement. One of the X chromosomes is very late replicating in the female somatic cells. The other X is also relatively late replicating. The Y chromosome is a minute acrocentric. A short metacentric chromosome was also found to be late replicating. Chromosome no. 20 has an obvious secondary constriction which often associates in a characteristic way. The sex bivalent is identified at pachytene as a characteristic "sex vesicle". At diakinesis it shows an end-to-end association. The mean number of chiasmata per cell was 40 at diakinesis-first metaphase

    Rapid Pathogen-Induced Apoptosis: A Mechanism Used by Dendritic Cells to Limit Intracellular Replication of Legionella pneumophila

    Get PDF
    Dendritic cells (DCs) are specialized phagocytes that internalize exogenous antigens and microbes at peripheral sites, and then migrate to lymphatic organs to display foreign peptides to naïve T cells. There are several examples where DCs have been shown to be more efficient at restricting the intracellular replication of pathogens compared to macrophages, a property that could prevent DCs from enhancing pathogen dissemination. To understand DC responses to pathogens, we investigated the mechanisms by which mouse DCs are able to restrict replication of the intracellular pathogen Legionella pneumophila. We show that both DCs and macrophages have the ability to interfere with L. pneumophila replication through a cell death pathway mediated by caspase-1 and Naip5. L. pneumophila that avoided Naip5-dependent responses, however, showed robust replication in macrophages but remained unable to replicate in DCs. Apoptotic cell death mediated by caspase-3 was found to occur much earlier in DCs following infection by L. pneumophila compared to macrophages infected similarly. Eliminating the pro-apoptotic proteins Bax and Bak or overproducing the anti-apoptotic protein Bcl-2 were both found to restore L. pneumophila replication in DCs. Thus, DCs have a microbial response pathway that rapidly activates apoptosis to limit pathogen replication

    Immunological parameters in girls with Turner syndrome

    Get PDF
    Disturbances in the immune system has been described in Turner syndrome, with an association to low levels of IgG and IgM and decreased levels of T- and B-lymphocytes. Also different autoimmune diseases have been connected to Turner syndrome (45, X), thyroiditis being the most common. Besides the typical features of Turner syndrome (short stature, failure to enter puberty spontaneously and infertility due to ovarian insufficiency) ear problems are common (recurrent otitis media and progressive sensorineural hearing disorder). Levels of IgG, IgA, IgM, IgD and the four IgG subclasses as well as T- and B-lymphocyte subpopulations were investigated in 15 girls with Turners syndrome to examine whether an immunodeficiency may be the cause of their high incidence of otitis media. No major immunological deficiency was found that could explain the increased incidence of otitis media in the young Turner girls

    DNA Damage–Induced Bcl-x(L) Deamidation Is Mediated by NHE-1 Antiport Regulated Intracellular pH

    Get PDF
    The pro-survival protein Bcl-x(L) is critical for the resistance of tumour cells to DNA damage. We have previously demonstrated, using a mouse cancer model, that oncogenic tyrosine kinase inhibition of DNA damage–induced Bcl-x(L) deamidation tightly correlates with T cell transformation in vivo, although the pathway to Bcl-x(L) deamidation remains unknown and its functional consequences unclear. We show here that rBcl-x(L) deamidation generates an iso-Asp(52)/iso-Asp(66) species that is unable to sequester pro-apoptotic BH3-only proteins such as Bim and Puma. DNA damage in thymocytes results in increased expression of the NHE-1 Na/H antiport, an event both necessary and sufficient for subsequent intracellular alkalinisation, Bcl-x(L) deamidation, and apoptosis. In murine thymocytes and tumour cells expressing an oncogenic tyrosine kinase, this DNA damage–induced cascade is blocked. Enforced intracellular alkalinisation mimics the effects of DNA damage in murine tumour cells and human B-lineage chronic lymphocytic leukaemia cells, thereby causing Bcl-x(L) deamidation and increased apoptosis. Our results define a signalling pathway leading from DNA damage to up-regulation of the NHE-1 antiport, to intracellular alkalanisation to Bcl-x(L) deamidation, to apoptosis, representing the first example, to our knowledge, of how deamidation of internal asparagine residues can be regulated in a protein in vivo. Our findings also suggest novel approaches to cancer therapy

    Foxp3 and IL-10 Expression Correlates with Parasite Burden in Lesional Tissues of Post Kala Azar Dermal Leishmaniasis (PKDL) Patients

    Get PDF
    Post kala azar dermal leishamniasis (PKDL), an unusual dermatosis develops in 5–15% of apparently cured visceral leishmaniasis cases in India and in about 60% of cases in Sudan. PKDL cases assume importance since they constitute a major human reservoir for the parasite. Inadequate treatment of VL, genetics, nutrition and immunological mechanisms that allow renewed multiplication of latent parasites or reinfection predispose to PKDL. Immunopathogenesis of PKDL is poorly understood. IL-10 is widely accepted as an immuno-suppressive cytokine and produced by diverse cell populations including, B cells, macrophages and CD4+ T cells. Natural T regulatory (nTreg) cells are subpopulation of CD4+ T cells that inhibit the response of other T cells. In this study we reported the accumulation of nTreg cells in lesion tissues of PKDL patients. Further correlation of Treg markers and IL-10 with parasite load in lesion tissues suggested a role of IL-10 and Treg in parasite establishment or persistence. Further studies are warranted to explore antigen specific IL-10 source in lesion tissues and unravel the concerted induction or accumulation of Treg in PKDL

    An Assay to Monitor HIV-1 Protease Activity for the Identification of Novel Inhibitors in T-Cells

    Get PDF
    The emergence of resistant HIV strains, together with the severe side-effects of existing drugs and lack of development of effective anti-HIV vaccines highlight the need for novel antivirals, as well as innovative methods to facilitate their discovery. Here, we have developed an assay in T-cells to monitor the proteolytic activity of the HIV-1 protease (PR). The assay is based on the inducible expression of HIV-1 PR fused within the Gal4 DNA-binding and transactivation domains. The fusion protein binds to the Gal4 responsive element and activates the downstream reporter, enhanced green fluorescent protein (eGFP) gene only in the presence of an effective PR Inhibitor (PI). Thus, in this assay, eGFP acts as a biosensor of PR activity, making it ideal for flow cytometry based screening. Furthermore, the assay was developed using retroviral technology in T-cells, thus providing an ideal environment for the screening of potential novel PIs in a cell-type that represents the natural milieu of HIV infection. Clones with the highest sensitivity, and robust, reliable and reproducible reporter activity, were selected. The assay is easily adaptable to other PR variants, a multiplex platform, as well as to high-throughput plate reader based assays and will greatly facilitate the search for novel peptide and chemical compound based PIs in T-cells

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
    corecore