471 research outputs found

    A comparison of artificial neural networks used for river forecasting

    No full text
    International audienceThis paper compares the performance of two artificial neural network (ANN) models ? the multi layer perceptron (MLP) and the radial basis function network (RBF) ? with a stepwise multiple linear regression model (SWMLR) and zero order forecasts (ZOF) of river flow. All models were trained using 15 minute rainfall-runoff data for the River Mole, a flood-prone tributary of the River Thames, UK. The models were then used to forecast river flows with a 6 hour lead time and 15 minute resolution, given only antecedent rainfall and discharge measurements. Two seasons (winter and spring) were selected for model testing using a cross-validation technique and a range of diagnostic statistics. Overall, the MLP was more skillful than the RBF, SWMLR and ZOF models. However, the RBF flow forecasts were only marginally better than those of the simpler SWMLR and ZOF models. The results compare favourably with a review of previous studies and further endorse claims that ANNs are well suited to rainfall-runoff modelling and (potentially) real-time flood forecasting

    Crossover effects in the Wolf-Villain model of epitaxial growth in 1+1 and 2+1 dimensions

    Full text link
    A simple model of epitaxial growth proposed by Wolf and Villain is investigated using extensive computer simulations. We find an unexpectedly complex crossover behavior of the original model in both 1+1 and 2+1 dimensions. A crossover from the effective growth exponent ÎČeff ⁣≈ ⁣0.37\beta_{\rm eff}\!\approx\!0.37 to ÎČeff ⁣≈ ⁣0.33\beta_{\rm eff}\!\approx\!0.33 is observed in 1+1 dimensions, whereas additional crossovers, which we believe are to the scaling behavior of an Edwards--Wilkinson type, are observed in both 1+1 and 2+1 dimensions. Anomalous scaling due to power--law growth of the average step height is found in 1+1 D, and also at short time and length scales in 2+1~D. The roughness exponents ζeffc\zeta_{\rm eff}^{\rm c} obtained from the height--height correlation functions in 1+1~D (≈ ⁣3/4\approx\!3/4) and 2+1~D (≈ ⁣2/3\approx\!2/3) cannot be simultaneously explained by any of the continuum equations proposed so far to describe epitaxial growth.Comment: 11 pages, REVTeX 3.0, IC-DDV-93-00

    Control of rotorcraft retreating blade stall using air-jet vortex generators

    Get PDF
    A series of low-speed wind tunnel tests were carried out on an oscillating airfoil fitted with two rows of air-jet vortex generators (AJVGs). The airfoil used had an RAE 9645 section and the two spanwise arrays of AJVGs were located at x/c=0.12 and 0.62. The devices and their distribution were chosen to assess their ability to modify/control dynamic stall; the goal being to enhance the aerodynamic performance of helicopter rotors on the retreating blade side of the disc. The model was pitched about the quarter chord with a reduced frequency (k) of 0.1 in a sinusoidal motion defined by a=15o+10sin_ t. The measured data indicate that, for continuous blowing from the front row of AJVGs with a momentum blowing coefficient (C μ) greater than 0.008, modifications to the stalling process are encouraging. In particular, the pitching moment behavior exhibits delayed stall and there is a marked reduction in the normal force hysteresis

    Google Trends indicators to inform water planning and drought management

    Get PDF
    Indicators are important tools for tracking the socio- environmental impacts of droughts and building resilience to climate change. We begin with an overview of metrics used for water planning and drought management, with particular emphasis on the UK. We explain how considerations of cost, immediacy, access, consistency, relevance, reliability and others denote the suitability of information for developing new indicators. We then demonstrate the potential of Google Trends (GT) online search data as drought indicators for England and Ireland. We show that search terms such as ‘drought’, ‘water butt’ and ‘hosepipe ban’ correlate significantly with conventional hydroclimatic data as well as with news-paper reports of various drought impacts during the period 2011–2022. GT data also show evidence of rising interest in water saving technologies, especially for outdoor water use. Meanwhile, online searches for ‘Defra’ and ‘Environment Agency’ have declined and are more often associated with flood episodes than droughts. Interest in water companies in England is more likely around hosepipe bans than water leakage (although this varies by company). We discuss the impli-cations of these findings for targeting information campaigns, plus prospects for monitoring drought impacts and public sentiment in near real- time

    An early Cambrian greenhouse climate

    Get PDF
    The oceans of the early Cambrian (~541 to 509 million years ago) were the setting for a marked diversification of animal life. However, sea temperatures — a key component of the early Cambrian marine environment — remain unconstrained, in part because of a substantial time gap in the stable oxygen isotope (delta 18 O) record before the evolution of euconodonts. We show that previously overlooked sources of fossil biogenic phosphate have the potential to fill this gap. Pristine phosphatic microfossils from the Comley Limestones, UK, yield a robust delta 18 O signature, suggesting sea surface temperatures of 20° to 25°C at high southern paleolatitudes (~65°S to 70°S) between ~514 and 509 million years ago. These sea temperatures are consistent with the distribution of coeval evaporite and calcrete deposits, peak continental weathering rates, and also our climate model simulations for this interval. Our results support an early Cambrian greenhouse climate comparable to those of the late Mesozoic and early Cenozoic, offering a framework for exploring the interplay between biotic and environmental controls on Cambrian animal diversification

    Relative magnitudes of sources of uncertainty in assessing climate change impacts on water supply security for the southern Adelaide water supply system

    Get PDF
    The sources of uncertainty in projecting the impacts of climate change on runoff are increasingly well recognized; however, translating these uncertainties to urban water security has received less attention in the literature. Furthermore, runoff cannot be used as a surrogate for water supply security when studying the impacts of climate change due to the nonlinear transformations in modeling water supply and the effects of additional uncertainties, such as demand. Consequently, this study presents a scenario-based sensitivity analysis to qualitatively rank the relative contributions of major sources of uncertainty in projecting the impacts of climate change on water supply security through time. This can then be used by water authorities to guide water planning and management decisions. The southern system of Adelaide, South Australia, is used to illustrate the methodology for which water supply system reliability is examined across six greenhouse gas (GHG) emissions scenarios, seven general circulation models, six demand projections, and 1000 stochastic rainfall time series. Results indicate the order of the relative contributions of uncertainty changes through time; however, demand is always the greatest source of uncertainty and GHG emissions scenarios the least. In general, reliability decreases over the planning horizon, illustrating the need for additional water sources or demand mitigation, while increasing uncertainty with time suggests flexible management is required to ensure future supply security with minimum regret.F.L. Paton, H.R. Maier and G.C. Dand

    Super Storm Desmond: a process-based assessment

    Get PDF
    “Super” Storm Desmond broke meteorological and hydrological records during a record warm year in the British-Irish Isles (BI). The severity of the storm may be a harbinger of expected changes to regional hydroclimate as global temperatures continue to rise. Here, we adopt a process-based approach to investigate the potency of Desmond, and explore the extent to which climate change may have been a contributory factor. Through an Eulerian assessment of water vapour flux we determine that Desmond was accompanied by an Atmospheric River (AR) of severity unprecedented since at least 1979, on account of both high atmospheric humidity and high wind speeds. Lagrangian air-parcel tracking and moisture attribution techniques show that long-term warming of North Atlantic sea surface temperatures (SSTs) has significantly increased the chance of such high humidity in ARs in the vicinity of the BI. We conclude that, given exactly the same dynamical conditions associated with Desmond, the likelihood of such an intense AR has already increased by 25% due to long-term climate change. However, our analysis represents a first-order assessment, and further research is needed into the controls influencing AR dynamics

    Adaptation responses to climate change differ between global megacities

    Get PDF
    Urban areas are increasingly at risk from climate change, with negative impacts predicted for human health, the economy and ecosystems1, 2. These risks require responses from cities to improve their resilience. Policymakers need to understand current adaptation spend to plan comprehensively and effectively. Through the measurement of spend in the newly defined ‘adaptation economy’, we analyse current climate change adaptation efforts in ten megacities. In all cases, the adaptation economy remains a small part of the overall economy, representing a maximum of 0.33% of a city’s gross domestic product (here referred to as GDPc). Differences in total spend are significant between cities in developed, emerging and developing countries, ranging from £15 million to £1,600 million. Comparing key subsectors, we demonstrate the differences in adaptation profiles. Developing cities have higher proportional spend on health and agriculture, whereas developed cities have higher spend on energy and water. Spend per capita and percentage of GDPc comparisons more clearly show disparities between cities. Developing country cities spend half the proportion of GDPc and significantly less per capita, suggesting that adaptation spend is driven by wealth rather than the number of vulnerable people. This indicates that current adaptation activities are insufficient in major population centres in developing and emerging economies

    Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions

    Get PDF
    Ecologists and economists have long talked past each other, but climate change presents similar threats to both groups. Water may serve as the best means of finding a common cause and building a new vision of ecological and economic sustainability, especially in the developing world
    • 

    corecore