16 research outputs found

    Rapid motion adaptation reveals the temporal dynamics of spatiotemporal correlation between ON and OFF pathways

    Get PDF
    At the early stages of visual processing, information is processed by two major thalamic pathways encoding brightness increments (ON) and decrements (OFF). Accumulating evidence suggests that these pathways interact and merge as early as in primary visual cortex. Using regular and reverse-phi motion in a rapid adaptation paradigm, we investigated the temporal dynamics of within and across pathway mechanisms for motion processing. When the adaptation duration was short (188 ms), reverse-phi and regular motion led to similar adaptation effects, suggesting that the information from the two pathways are combined efficiently at early-stages of motion processing. However, as the adaption duration was increased to 752 ms, reverse-phi and regular motion showed distinct adaptation effects depending on the test pattern used, either engaging spatiotemporal correlation between the same or opposite contrast polarities. Overall, these findings indicate that spatiotemporal correlation within and across ON-OFF pathways for motion processing can be selectively adapted, and support those models that integrate within and across pathway mechanisms for motion processing

    Effect of the crystal structure of small precursor particles on the growth of β-NaREF4 (RE = Sm, Eu, Gd, Tb) nanocrystals.

    No full text
    The origin of the narrow particle size distributions obtained in the oleic acid-based synthesis of hexagonal phase β-NaREF4 nanocrystals (RE = Sm, Eu, Gd, Tb) has been investigated. Compared to the standard synthesis, the growth conditions were simplified by using small purified particles of either α-NaREF4 (cubic phase) or β-NaREF4 (hexagonal phase) as single-source precursors, thereby avoiding the complications arising from the simultaneous presence of molecular educts and intermediately formed small particles. The study shows that α-phase as well as β-phase particles grow by Ostwald-ripening but narrow particle size distributions of the β-NaREF4 product particles are only obtained when α-phase precursor particles are employed. Since the small particles are also formed as intermediate products in the standard synthesis of β-NaSmF4, β-NaEuF4, β-NaGdF4 and β-NaTbF4 particles, their crystal phase is an important parameter to obtain a narrow size distribution in these systems

    Polymer-Modified Cellulose Nanofibrils Cross-Linked with Cobalt Iron Oxide Nanoparticles as a Gel Ink for 3D Printing Objects with Magnetic and Electrochemical Properties

    No full text
    This paper presents a strategy to convert hydrophilic cellulose nanofibrils (CNF) into a highly cross-linked hydrophobic network with inorganic nanoparticles to develop a gel ink suitable for gel 3D printing. The CNF were chemically modified initially through a single-electron transfer-living radical polymerization (SET-LRP) of stearyl acrylate (SA) in the presence of the surface-modified cobalt iron oxide (CoFe2O4, CFO) nanoparticles. The modified CFO nanoparticles provide their multifunctional properties, such as magnetic and electrochemical, to the CNF hybrid network and, at the same time, act as cross-linking agents between the nanocellulose fibrils, while the grafted poly-stearyl acrylate (PSA) introduces a strong hydrophobicity in the network. A suitable gel ink form of this CNF–PSA–CFO material for gel 3D printing was achieved together with a certain solvent. Some test structure prints were directly obtained with the CNF–PSA–CFO gel and were used to evaluate the consolidation of such 3D objects through solvent exchange and freeze-drying while also keeping the magnetic and electrochemical properties of CFO in the CNF-based composite intact. The pristine CNF and CFO particles and the CNF–PSA–CFO were characterized by FTIR, SEM, XPS, TGA, VSM, and CV measurements

    3D Printable Hybrid Gel Made of Polymer Surface-Modified Cellulose Nanofibrils Prepared by Surface-Initiated Controlled Radical Polymerization (SI-SET-LRP) and Upconversion Luminescent Nanoparticles

    No full text
    A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models
    corecore