577 research outputs found

    Exomoon habitability constrained by energy flux and orbital stability

    Full text link
    Detecting massive satellites of extrasolar planets has now become feasible, which led naturally to questions about their habitability. In a previous study we presented constraints on the habitability of moons from stellar and planetary illumination as well as from tidal heating. Here I refine our model by including the effect of eclipses on the orbit-averaged illumination. Moons in low-mass stellar systems must orbit their planet very closely to remain bound, which puts them at risk of strong tidal heating. I first describe the effect of eclipses on stellar illumination of satellites. Then I calculate the orbit-averaged energy flux including illumination from the planet and tidal heating. Habitability is defined by a scaling relation at which a moon loses its water by the runaway greenhouse process. As a working hypothesis, orbital stability is assumed if the moon's orbital period is less than 1/9 of the planet's orbital period. Due to eclipses, a satellite in a close orbit can experience a reduction in orbit-averaged stellar flux by up to about 6%. The smaller the semi-major axis and the lower the inclination of the moon's orbit, the stronger the reduction. I find a lower mass limit of ~0.2M_sun for exomoon host stars to avoid the runaway greenhouse effect. Precise estimates depend on the satellite's orbital eccentricity. Deleterious effects on exomoon habitability may occur up to ~0.5M_sun. Although the habitable zone lies close to low-mass stars, which allows for many transits of planet-moon binaries within a given observation cycle, resources should not be spent to trace habitable satellites around them. Gravitational perturbations by the star, another planet, or another satellite induce eccentricities that likely make any moon uninhabitable. Estimates for individual systems require dynamical simulations that include perturbations among all bodies and tidal heating in the satellite.Comment: 4 pages, 2 figures, accepted by A&

    Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling

    Full text link
    The recently discovered exoplanet Gl581d is extremely close to the outer edge of its system's habitable zone, which has led to much speculation on its possible climate. We have performed a range of simulations to assess whether, given simple combinations of chemically stable greenhouse gases, the planet could sustain liquid water on its surface. For best estimates of the surface gravity, surface albedo and cloud coverage, we find that less than 10 bars of CO2 is sufficient to maintain a global mean temperature above the melting point of water. Furthermore, even with the most conservative choices of these parameters, we calculate temperatures above the water melting point for CO2 partial pressures greater than about 40 bar. However, we note that as Gl581d is probably in a tidally resonant orbit, further simulations in 3D are required to test whether such atmospheric conditions are stable against the collapse of CO2 on the surface.Comment: 9 pages, 11 figures. Accepted for publication in Astronomy & Astrophysic

    Transient conditions for biogenesis on low-mass exoplanets with escaping hydrogen atmospheres

    Full text link
    Exoplanets with lower equilibrium temperatures than Earth and primordial hydrogen atmospheres that evaporate after formation should pass through transient periods where oceans can form on their surfaces, as liquid water can form below a few thousand bar pressure and H2-H2 collision-induced absorption provides significant greenhouse warming. The duration of the transient period depends on the planet size, starting H2 inventory and star type, with the longest periods typically occurring for planets around M-class stars. As pre-biotic compounds readily form in the reducing chemistry of hydrogen-rich atmospheres, conditions on these planets could be favourable to the emergence of life. The ultimate fate of any emergent organisms under such conditions would depend on their ability to adapt to (or modify) their gradually cooling environment.Comment: 19 pages, 5 figures, accepted for publication in Icaru

    Abiotic O_2 Levels on Planets around F, G, K, and M Stars: Effects of Lightning-produced Catalysts in Eliminating Oxygen False Positives

    Get PDF
    Over the last few years, a number of authors have suggested that, under certain circumstances, molecular oxygen (O_2) or ozone (O_3) generated by abiotic processes may accumulate to detectable concentrations in a habitable terrestrial planet's atmosphere, producing so-called "false positives" for life. But the models have occasionally disagreed with each other, with some predicting false positives, and some not, for the same apparent set of circumstances. We show here that photochemical false positives derive either from inconsistencies in the treatment of atmospheric and global redox balance or from the treatment (or lack thereof) of lightning. For habitable terrestrial planets with even trace amounts of atmospheric N_2, NO produced by lightning catalyzes the recombination of CO and O derived from CO_2 photolysis and should be sufficient to eliminate all reported false positives. Molecular oxygen thus remains a useful biosignature gas for Earth-like extrasolar planets, provided that the planet resides within the conventional liquid water habitable zone and has not experienced distinctly non-Earth-like, irrecoverable water loss

    Increased insolation threshold for runaway greenhouse processes on Earth like planets

    Full text link
    Because the solar luminosity increases over geological timescales, Earth climate is expected to warm, increasing water evaporation which, in turn, enhances the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can "runaway" until all the oceans are evaporated. Through increases in stratospheric humidity, warming may also cause oceans to escape to space before the runaway greenhouse occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated with unidimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of Earth's climate. Here we use a 3D global climate model to show that the threshold for the runaway greenhouse is about 375 W/m2^2, significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback on the long term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to defer the runaway greenhouse limit to higher insolation than inferred from 1D models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains cold and dry enough to hamper atmospheric water escape, even at large fluxes. This has strong implications for Venus early water history and extends the size of the habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013. Accepted version before journal editing and with Supplementary Informatio

    Nulling interferometry: performance comparison between Antarctica and other ground-based sites

    Full text link
    Detecting the presence of circumstellar dust around nearby solar-type main sequence stars is an important pre-requisite for the design of future life-finding space missions such as ESA's Darwin or NASA's Terrestrial Planet Finder (TPF). The high Antarctic plateau may provide appropriate conditions to perform such a survey from the ground. We investigate the performance of a nulling interferometer optimised for the detection of exozodiacal discs at Dome C, on the high Antarctic plateau, and compare it to the expected performance of similar instruments at temperate sites. Based on the currently available measurements of the turbulence characteristics at Dome C, we adapt the GENIEsim software (Absil et al. 2006, A&A 448) to simulate the performance of a nulling interferometer on the high Antarctic plateau. To feed a realistic instrumental configuration into the simulator, we propose a conceptual design for ALADDIN, the Antarctic L-band Astrophysics Discovery Demonstrator for Interferometric Nulling. We assume that this instrument can be placed above the 30-m high boundary layer, where most of the atmospheric turbulence originates. We show that an optimised nulling interferometer operating on a pair of 1-m class telescopes located 30 m above the ground could achieve a better sensitivity than a similar instrument working with two 8-m class telescopes at a temperate site such as Cerro Paranal. The detection of circumstellar discs about 20 times as dense as our local zodiacal cloud seems within reach for typical Darwin/TPF targets in a integration time of a few hours. Moreover, the exceptional turbulence conditions significantly relax the requirements on real-time control loops, which has favourable consequences on the feasibility of the nulling instrument.Comment: 10 pages, accepted for publication in A&

    Can Life develop in the expanded habitable zones around Red Giant Stars?

    Full text link
    We present some new ideas about the possibility of life developing around sub-giant and red giant stars. Our study concerns the temporal evolution of the habitable zone. The distance between the star and the habitable zone, as well as its width, increases with time as a consequence of stellar evolution. The habitable zone moves outward after the star leaves the main sequence, sweeping a wider range of distances from the star until the star reaches the tip of the asymptotic giant branch. If life could form and evolve over time intervals from 5×1085 \times 10^8 to 10910^9 years, then there could be habitable planets with life around red giant stars. For a 1 M⊙_{\odot} star at the first stages of its post main-sequence evolution, the temporal transit of the habitable zone is estimated to be of several 109^9 years at 2 AU and around 108^8 years at 9 AU. Under these circumstances life could develop at distances in the range 2-9 AU in the environment of sub-giant or giant stars and in the far distant future in the environment of our own Solar System. After a star completes its first ascent along the Red Giant Branch and the He flash takes place, there is an additional stable period of quiescent He core burning during which there is another opportunity for life to develop. For a 1 M⊙_{\odot} star there is an additional 10910^9 years with a stable habitable zone in the region from 7 to 22 AU. Space astronomy missions, such as proposed for the Terrestrial Planet Finder (TPF) and Darwin should also consider the environments of sub-giants and red giant stars as potentially interesting sites for understanding the development of life

    Telescope to Observe Planetary Systems (TOPS): a high throughput 1.2-m visible telescope with a small inner working angle

    Get PDF
    The Telescope to Observe Planetary Systems (TOPS) is a proposed space mission to image in the visible (0.4-0.9 micron) planetary systems of nearby stars simultaneously in 16 spectral bands (resolution R~20). For the ~10 most favorable stars, it will have the sensitivity to discover 2 R_E rocky planets within habitable zones and characterize their surfaces or atmospheres through spectrophotometry. Many more massive planets and debris discs will be imaged and characterized for the first time. With a 1.2m visible telescope, the proposed mission achieves its power by exploiting the most efficient and robust coronagraphic and wavefront control techniques. The Phase-Induced Amplitude Apodization (PIAA) coronagraph used by TOPS allows planet detection at 2 lambda/d with nearly 100% throughput and preserves the telescope angular resolution. An efficient focal plane wavefront sensing scheme accurately measures wavefront aberrations which are fed back to the telescope active primary mirror. Fine wavefront control is also performed independently in each of 4 spectral channels, resulting in a system that is robust to wavefront chromaticity.Comment: 12 pages, SPIE conference proceeding, May 2006, Orlando, Florid

    Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration

    Full text link
    We present the results of N--body simulations which examine the effect that gas giant planet migration has on the formation of terrestrial planets. The models incorporate a 0.5 Jupiter mass planet undergoing type II migration through an inner protoplanet--planetesimal disk, with gas drag included. Each model is initiated with the inner disk being at successively increased levels of maturity, so that it is undergoing either oligarchic or giant impact style growth as the gas giant migrates. In all cases, a large fraction of the disk mass survives the passage of the giant, either by accreting into massive terrestrial planets shepherded inward of the giant, or by being scattered into external orbits. Shepherding is favored in younger disks where there is strong dynamical friction from planetesimals and gas drag is more influential, whereas scattering dominates in more mature disks where dissipation is weaker. In each scenario, sufficient mass is scattered outward to provide for the eventual accretion of a set of terrestrial planets in external orbits, including within the system's habitable zone. An interesting result is the generation of massive, short period, terrestrial planets from compacted material pushed ahead of the giant. These planets are reminiscent of the short period Neptune mass planets discovered recently, suggesting that such `hot Neptunes' could form locally as a by-product of giant planet migration.Comment: 17 pages, 11 figures, to be published in A&A. Higher resolution pdf available at: http://www.users.globalnet.co.uk/~mfogg/3453fogg.pd
    • …
    corecore