253 research outputs found

    The feasibility of measuring the activation of the trunk muscles in healthy older adults during trunk stability exercises

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the older adult population increases, the potential functional and clinical burden of trunk muscle dysfunction may be significant. An evaluation of risk factors including the impact of the trunk muscles in terms of their temporal firing patterns, amplitudes of activation, and contribution to spinal stability is required. Therefore, the specific purpose of this study was to assess the feasibility of measuring the activation of trunk muscles in healthy older adults during specific leg exercises with trunk stabilization.</p> <p>Methods</p> <p>12 asymptomatic adults 65 to 75 years of age were included in the study. Participants performed a series of trunk stability exercises, while bilateral activation of abdominal and back extensor muscles was recorded by 24 pairs of Meditrace™ surface electrodes. Maximal voluntary isometric contractions (MVIC) were performed for electromyographic (EMG) normalization purposes. EMG waveforms were generated and amplitude measures as a percentage of MVIC were calculated along with ensemble average profiles. 3D kinematics data were also recorded, using an electromagnetic sensor placed at the left lateral iliac crest. Furthermore, a qualitative assessment was conducted to establish the participant's ability to complete all experimental tasks.</p> <p>Results</p> <p>Excellent quality abdominal muscle activation data were recorded during the tasks. Participants performed the trunk stability exercises with an unsteady, intermittent motion, but were able to keep pelvic motion to less than 10°. The EMG amplitudes showed that during these exercises, on average, the older adults recruited their abdominal muscles from 15–34% of MVIC and back extensors to less than 10% of MVIC. There were similarities among the abdominal muscle profiles. No participants reported pain during the testing session, although 3 (25%) of the participants reported delayed onset muscle soreness during follow up that was not functionally limiting.</p> <p>Conclusion</p> <p>Older adults were able to successfully complete the trunk stability protocol that was developed for younger adults with some minor modifications. The collected EMG amplitudes were higher than those reported in the literature for young healthy adults. The temporal waveforms for the abdominal muscles showed a degree of synchrony among muscles, except for the early activation from the internal oblique prior to lifting the leg off the table.</p

    Diversification of the Caenorhabditis heat shock response by Helitron transposable elements.

    Get PDF
    Heat Shock Factor 1 (HSF-1) is a key regulator of the heat shock response (HSR). Upon heat shock, HSF-1 binds well-conserved motifs, called Heat Shock Elements (HSEs), and drives expression of genes important for cellular protection during this stress. Remarkably, we found that substantial numbers of HSEs in multiple Caenorhabditis species reside within Helitrons, a type of DNA transposon. Consistent with Helitron-embedded HSEs being functional, upon heat shock they display increased HSF-1 and RNA polymerase II occupancy and up-regulation of nearby genes in C. elegans. Interestingly, we found that different genes appear to be incorporated into the HSR by species-specific Helitron insertions in C. elegans and C. briggsae and by strain-specific insertions among different wild isolates of C. elegans. Our studies uncover previously unidentified targets of HSF-1 and show that Helitron insertions are responsible for rewiring and diversifying the Caenorhabditis HSR

    Decision Forest Analysis of 61 Single Nucleotide Polymorphisms in a Case-Control Study of Esophageal Cancer; a novel method

    Get PDF
    BACKGROUND: Systematic evaluation and study of single nucleotide polymorphisms (SNPs) made possible by high throughput genotyping technologies and bioinformatics promises to provide breakthroughs in the understanding of complex diseases. Understanding how the millions of SNPs in the human genome are involved in conferring susceptibility or resistance to disease, or in rendering a drug efficacious or toxic in the individual is a major goal of the relatively new fields of pharmacogenomics. Esophageal squamous cell carcinoma is a high-mortality cancer with complex etiology and progression involving both genetic and environmental factors. We examined the association between esophageal cancer risk and patterns of 61 SNPs in a case-control study for a population from Shanxi Province in North Central China that has among the highest rates of esophageal squamous cell carcinoma in the world. METHODS: High-throughput Masscode mass spectrometry genotyping was done on genomic DNA from 574 individuals (394 cases and 180 age-frequency matched controls). SNPs were chosen from among genes involving DNA repair enzymes, and Phase I and Phase II enzymes. We developed a novel adaptation of the Decision Forest pattern recognition method named Decision Forest for SNPs (DF-SNPs). The method was designated to analyze the SNP data. RESULTS: The classifier in separating the cases from the controls developed with DF-SNPs gave concordance, sensitivity and specificity, of 94.7%, 99.0% and 85.1%, respectively; suggesting its usefulness for hypothesizing what SNPs or combinations of SNPs could be involved in susceptibility to esophageal cancer. Importantly, the DF-SNPs algorithm incorporated a randomization test for assessing the relevance (or importance) of individual SNPs, SNP types (Homozygous common, heterozygous and homozygous variant) and patterns of SNP types (SNP patterns) that differentiate cases from controls. For example, we found that the different genotypes of SNP GADD45B E1122 are all associated with cancer risk. CONCLUSION: The DF-SNPs method can be used to differentiate esophageal squamous cell carcinoma cases from controls based on individual SNPs, SNP types and SNP patterns. The method could be useful to identify potential biomarkers from the SNP data and complement existing methods for genotype analyses

    Interpretable machine learning models for classifying low back pain status using functional physiological variables.

    Get PDF
    PURPOSE:To evaluate the predictive performance of statistical models which distinguishes different low back pain (LBP) sub-types and healthy controls, using as input predictors the time-varying signals of electromyographic and kinematic variables, collected during low-load lifting. METHODS:Motion capture with electromyography (EMG) assessment was performed on 49 participants [healthy control (con) = 16, remission LBP (rmLBP) = 16, current LBP (LBP) = 17], whilst performing a low-load lifting task, to extract a total of 40 predictors (kinematic and electromyographic variables). Three statistical models were developed using functional data boosting (FDboost), for binary classification of LBP statuses (model 1: con vs. LBP; model 2: con vs. rmLBP; model 3: rmLBP vs. LBP). After removing collinear predictors (i.e. a correlation of > 0.7 with other predictors) and inclusion of the covariate sex, 31 predictors were included for fitting model 1, 31 predictors for model 2, and 32 predictors for model 3. RESULTS:Seven EMG predictors were selected in model 1 (area under the receiver operator curve [AUC] of 90.4%), nine predictors in model 2 (AUC of 91.2%), and seven predictors in model 3 (AUC of 96.7%). The most influential predictor was the biceps femoris muscle (peak [Formula: see text]  = 0.047) in model 1, the deltoid muscle (peak [Formula: see text] =  0.052) in model 2, and the iliocostalis muscle (peak [Formula: see text] =  0.16) in model 3. CONCLUSION:The ability to transform time-varying physiological differences into clinical differences could be used in future prospective prognostic research to identify the dominant movement impairments that drive the increased risk. These slides can be retrieved under Electronic Supplementary Material

    Mapping and phasing of structural variation in patient genomes using nanopore sequencing

    Get PDF
    Despite improvements in genomics technology, the detection of structural variants (SVs) from short-read sequencing still poses challenges, particularly for complex variation. Here we analyse the genomes of two patients with congenital abnormalities using the MinION nanopore sequencer and a novel computational pipeline—NanoSV. We demonstrate that nanopore long reads are superior to short reads with regard to detection of de novo chromothripsis rearrangements. The long reads also enable efficient phasing of genetic variations, which we leveraged to determine the parental origin of all de novo chromothripsis breakpoints and to resolve the structure of these complex rearrangements. Additionally, genome-wide surveillance of inherited SVs reveals novel variants, missed in short-read data sets, a large proportion of which are retrotransposon insertions. We provide a first exploration of patient genome sequencing with a nanopore sequencer and demonstrate the value of long-read sequencing in mapping and phasing of SVs for both clinical and research applications

    The health and housing in transition study: A longitudinal study of the health of homeless and vulnerably housed adults in three Canadian cities

    Get PDF
    Objectives: While substantial research has demonstrated the poor health status of homeless populations, the health status of vulnerably housed individuals is largely unknown. Furthermore, few longitudinal studies have assessed the impact of housing transitions on health. The health and housing in transition (HHiT) study is a prospective cohort study that aims to track the health and housing status of a representative sample of homeless and vulnerably housed single adults in three Canadian cities (Toronto, Ottawa, and Vancouver). This paper discusses the HHiT study methodological recruitment strategies and follow-up procedures, including a discussion of the limitations and challenges experienced to date. Methods: Participants (n = 1,192) were randomly selected at shelters, meal programmes, community health centres, drop-in centres, rooming houses, and single-room occupancy hotels from January to December 2009 and are being re-interviewed every 12 months for a 2-year period. Results: At baseline, over 85% of participants reported having at least one chronic health condition, and over 50% reported being diagnosed with a mental health problem. Conclusions: Our findings suggest that, regardless of housing status, participants had extremely poor overall health

    Older People, Sense of Coherence and Community

    Get PDF
    Population ageing is a global trend and even though years added to life often are lived in good health; it will have an impact on healthcare, housing and facilities, and social security costs. Healthy ageing in place, especially in one’s own home and community, increasingly receives attention from health professionals, researchers, and policymakers. In this chapter, we first discuss the meaning of the concept of healthy ageing, and how Sense of Coherence contributes to this process. Next, we discuss the characteristics of the community in which older people live their lives and how the community can provide resources (GRR and SRR) to strengthen Sense of Coherence and hence perceived well-being and quality of life
    corecore