1,573 research outputs found

    Modern mechanisms make manless Martian mission mobile: Spin-off spells stairclimbing self-sufficiency for earthbound handicapped

    Get PDF
    Concepts were developed for three wheel chairs from progressively improving designs of a proposed unmanned roving vehicle for the surface exploration of Mars; as a spin-off, a concept for a stair-climbing wheel chair was generated. The mechanisms employed in these are described. The Mars mission is envisioned using the booster rockets and aeroshell of the Viking missions

    Monopolelike probes for quantitative magnetic force microscopy: calibration and application

    Full text link
    A local magnetization measurement was performed with a Magnetic Force Microscope (MFM) to determine magnetization in domains of an exchange coupled [Co/Pt]/Co/Ru multilayer with predominant perpendicular anisotropy. The quantitative MFM measurements were conducted with an iron filled carbon nanotube tip, which is shown to behave like a monopole. As a result we determined an additional in-plane magnetization component of the multilayer, which is explained by estimating the effective permeability of the sample within the \mu*-method.Comment: 3 pages, 3 figure

    First detection of [N II] 205 micrometer absorption in interstellar gas

    Get PDF
    We present high resolution [NII] 205 micrometer ^3P_1-^3P_0 spectra obtained with Herschel-HIFI towards a small sample of far-infrared bright star forming regions in the Galactic plane: W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4), and G34.3+0.1. All sources display an emission line profile associated directly with the HII regions themselves. For the first time we also detect absorption of the [NII] 205 micrometer line by extended low-density foreground material towards W31C and W49N over a wide range of velocities. We attribute this absorption to the warm ionised medium (WIM) and find N(N^+)\approx 1.5x10^17 cm^-2 towards both sources. This is in agreement with recent Herschel-HIFI observations of [CII] 158 micrometer, also observed in absorption in the same sight-lines, if \approx7-10 % of all C^+ ions exist in the WIM on average. Using an abundance ratio of [N]/[H] = 6.76x10^-5 in the gas phase we find that the mean electron and proton volume densities are ~0.1-0.3 cm^-3 assuming a WIM volume filling fraction of 0.1-0.4 with a corresponding line-of-sight filling fraction of 0.46-0.74. A low density and a high WIM filling fraction are also supported by RADEX modelling of the [NII] 205 micrometer absorption and emission together with visible emission lines attributed mainly to the WIM. The detection of the 205 micrometer line in absorption emphasises the importance of a high spectral resolution, and also offers a new tool for investigation of the WIM.Comment: 7 pages, 4 figures, accepted for publication in Astronomy & Astrophysics, 11 June 201

    Herschel observations of EXtra-Ordinary Sources: Analysis of the HIFI 1.2 THz Wide Spectral Survey Toward Orion KL II. Chemical Implications

    Get PDF
    We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a novel technique to identify those molecules emitting in the hottest gas. In particular, we find the complex nitrogen bearing species CH3_{3}CN, C2_{2}H3_{3}CN, C2_{2}H5_{5}CN, and NH2_{2}CHO systematically trace hotter gas than the oxygen bearing organics CH3_{3}OH, C2_{2}H5_{5}OH, CH3_{3}OCH3_{3}, and CH3_{3}OCHO, which do not contain nitrogen. If these complex species form predominantly on grain surfaces, this may indicate N-bearing organics are more difficult to remove from grain surfaces than O-bearing species. Another possibility is that hot (Tkin_{\rm kin}\sim300 K) gas phase chemistry naturally produces higher complex cyanide abundances while suppressing the formation of O-bearing complex organics. We compare our derived rotation temperatures and molecular abundances to chemical models, which include gas-phase and grain surface pathways. Abundances for a majority of the detected complex organics can be reproduced over timescales \gtrsim 105^{5} years, with several species being under predicted by less than 3σ\sigma. Derived rotation temperatures for most organics, furthermore, agree reasonably well with the predicted temperatures at peak abundance. We also find that sulfur bearing molecules which also contain oxygen (i.e. SO, SO2_{2}, and OCS) tend to probe the hottest gas toward Orion KL indicating the formation pathways for these species are most efficient at high temperatures.Comment: 31 pages, 6 figures, 1 Table, accepted to the Astrophysical Journa

    The chemistry of C3 & Carbon Chain Molecules in DR21(OH)

    Get PDF
    (Abridged) We have observed velocity resolved spectra of four ro-vibrational far-infrared transitions of C3 between the vibrational ground state and the low-energy nu2 bending mode at frequencies between 1654--1897 GHz using HIFI on board Herschel, in DR21(OH), a high mass star forming region. Several transitions of CCH and c-C3H2 have also been observed with HIFI and the IRAM 30m telescope. A gas and grain warm-up model was used to identify the primary C3 forming reactions in DR21(OH). We have detected C3 in absorption in four far-infrared transitions, P(4), P(10), Q(2) and Q(4). The continuum sources MM1 and MM2 in DR21(OH) though spatially unresolved, are sufficiently separated in velocity to be identified in the C3 spectra. All C3 transitions are detected from the embedded source MM2 and the surrounding envelope, whereas only Q(4) & P(4) are detected toward the hot core MM1. The abundance of C3 in the envelope and MM2 is \sim6x10^{-10} and \sim3x10^{-9} respectively. For CCH and c-C3H2 we only detect emission from the envelope and MM1. The observed CCH, C3, and c-C3H2 abundances are most consistent with a chemical model with n(H2)\sim5x10^{6} cm^-3 post-warm-up dust temperature, T_max =30 K and a time of \sim0.7-3 Myr. Post warm-up gas phase chemistry of CH4 released from the grain at t\sim 0.2 Myr and lasting for 1 Myr can explain the observed C3 abundance in the envelope of DR21(OH) and no mechanism involving photodestruction of PAH molecules is required. The chemistry in the envelope is similar to the warm carbon chain chemistry (WCCC) found in lukewarm corinos. The observed lower C3 abundance in MM1 as compared to MM2 and the envelope could be indicative of destruction of C3 in the more evolved MM1. The timescale for the chemistry derived for the envelope is consistent with the dynamical timescale of 2 Myr derived for DR21(OH) in other studies.Comment: 11 Pages, 6 figures, accepted for publication in A&

    Single flux quantum circuits with damping based on dissipative transmission lines

    Full text link
    We propose and demonstrate the functioning of a special Rapid Single Flux Quantum (RSFQ) circuit with frequency-dependent damping. This damping is achieved by shunting individual Josephson junctions by pieces of open-ended RC transmission lines. Our circuit includes a toggle flip-flop cell, Josephson transmission lines transferring single flux quantum pulses to and from this cell, as well as DC/SFQ and SFQ/DC converters. Due to the desired frequency-dispersion in the RC line shunts which ensures sufficiently low noise at low frequencies, such circuits are well-suited for integrating with the flux/phase Josephson qubit and enable its efficient control.Comment: 6 pages incl. 6 figure

    Arsenic trioxide down-regulates antiapoptotic genes and induces cell death in mycosis fungoides tumors in a mouse model

    Get PDF
    Background: Mycosis fungoides (MF) is the most frequent cutaneous T-cell lymphoma (CTCL). Arsenic trioxide (As2O3) has recently been shown to be effective against leukemias, so we studied whether As2O3 induces apoptosis of CTCL cells in vitro. We further investigated if As2O3 is effective in a MF mouse model. Material and methods: Annexin V/7-amino-actinomycin-D stainings were carried out to investigate if As2O3 induced apoptosis of CTCL cell lines. To study the underlying mechanisms, the effects of As2O3 on various transcription factors and apoptosis regulating proteins were analyzed by western blots, electrophoretic mobility shift assays and transcription factor enzyme-linked immunosorbent assays. The ability of As2O3 to induce tumor regression was investigated in a MF mouse model. Results: As2O3-induced apoptosis was paralleled by a reduction of the DNA-binding activities of transcription factors of the NFkB and signal transducer and activator of transcription gene families and reduced expression of the antiapoptotic proteins bcl-1, bcl-xL and mcl-1. Local injections of 200 μM As2O3 into tumors caused complete remissions in five of six mice and one partial remission. Conclusions: As2O3 induced apoptosis of CTCL cells by the down-regulation of transcription factors that stimulate the expression of antiapoptotic genes. Local injection of As2O3 into MF tumor-bearing mice resulted in tumor regressio

    A new view of electrochemistry at highly oriented pyrolytic graphite

    Get PDF
    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes

    Excitation and Abundance of C3 in star forming cores:Herschel/HIFI observations of the sight-lines to W31C and W49N

    Full text link
    We present spectrally resolved observations of triatomic carbon (C3) in several ro-vibrational transitions between the vibrational ground state and the low-energy nu2 bending mode at frequencies between 1654-1897 GHz along the sight-lines to the submillimeter continuum sources W31C and W49N, using Herschel's HIFI instrument. We detect C3 in absorption arising from the warm envelope surrounding the hot core, as indicated by the velocity peak position and shape of the line profile. The sensitivity does not allow to detect C3 absorption due to diffuse foreground clouds. From the column densities of the rotational levels in the vibrational ground state probed by the absorption we derive a rotation temperature (T_rot) of ~50--70 K, which is a good measure of the kinetic temperature of the absorbing gas, as radiative transitions within the vibrational ground state are forbidden. It is also in good agreement with the dust temperatures for W31C and W49N. Applying the partition function correction based on the derived T_rot, we get column densities N(C3) ~7-9x10^{14} cm^{-2} and abundance x(C3)~10^{-8} with respect to H2. For W31C, using a radiative transfer model including far-infrared pumping by the dust continuum and a temperature gradient within the source along the line of sight we find that a model with x(C3)=10^{-8}, T_kin=30-50 K, N(C3)=1.5 10^{15} cm^{-2} fits the observations reasonably well and provides parameters in very good agreement with the simple excitation analysis.Comment: Accepted for publication in Astronomy and Astrophysics (HIFI first results issue
    corecore